菱形ABCD,一個內(nèi)角為150°,如果邊長為a,則它的高為________.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

頂點在矩形邊上的菱形叫做矩形的內(nèi)接菱形.如圖,矩形ABCD中,已知:AB=a,BC=b(a<b),(1)、(2)、(3)是三種不同內(nèi)接菱形的方式.
①圖(1)中,若AH=BG=AB,則四邊形ABGH是矩形ABCD的內(nèi)接菱形;
②圖(2)中,若點E、F、G和H分別是AB、BC、CD和DE的中點,則四邊形EFGH是矩形ABCD的內(nèi)接菱形;
③圖(3)中,若EF垂直平分對角線AC,交BC于點E,交AD于點F,交AC于點O,則四邊形AECF是矩形ABCD的內(nèi)接菱形.
(1)請你從①,②,③三個命題中選擇一個進行證明;
(2)在圖(1)、(2)、(3)中,證明圖(3)中菱形AECF是這三個不同的矩形ABCD的內(nèi)接菱形面積最大的;
(3)比較(1)、(2)中矩形ABCD的內(nèi)接菱形ABGH與EFGH的面積大小;
(4)在矩形ABCD中,你還能畫出第4種矩形內(nèi)接菱形嗎?若能,請在(4)中畫出;若不能,則說明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀材料:“最值問題”是數(shù)學中的一類較具挑戰(zhàn)性的問題.其實,數(shù)學史上也有不少相關(guān)的故事,如下即為其中較為經(jīng)典的一則:海倫是古希臘精通數(shù)學、物理的學者,相傳有位將軍曾向他請教一個問題--如圖1,從A點出發(fā),到筆直的河岸l去飲馬,然后再去B地,走什么樣的路線最短呢?海倫輕松地給出了答案:作點A關(guān)于直線l的對稱點A′,連接A′B交l于點P,則PA+PB=A′B 的值最。
解答問題:
(1)如圖2,⊙O的半徑為2,點A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動點,求PA+PC的最小值;
(2)如圖3,已知菱形ABCD的邊長為6,∠DAB=60°.將此菱形放置于平面直角坐標系中,各頂點恰好在坐標軸上.現(xiàn)有一動點P從點A出發(fā),以每秒2個單位的速度,沿A→C的方向,向點C運動.當?shù)竭_點C后,立即以相同的速度返回,返回途中,當運動到x軸上某一點M時,立即以每秒1個單位的速度,沿M→B的方向,向點B運動.當?shù)竭_點B時,整個運動停止.
①為使點P能在最短的時間內(nèi)到達點B處,則點M的位置應如何確定?
②在①的條件下,設點P的運動時間為t(s),△PAB的面積為S,在整個運動過程中,試求S與t之間的函數(shù)關(guān)系式,并指出自變量t的取值范圍.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標系中,網(wǎng)格中每一個小正方形的邊長為1個單位長度,
(1)請在所給的網(wǎng)格內(nèi)適當平移線段AB、BC,使平移后的線段與原線段AB、BC組成菱形ABCD,并寫出點D的坐標
 

(2)菱形ABCD的周長為
 
個單位長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•莆田)如圖所示,某學校擬建一個含內(nèi)接矩形的菱形花壇(花壇為軸對稱圖形).矩形的四個頂點分別在菱形四條邊上,菱形ABCD的邊長AB=4米,∠ABC=60°.設AE=x米(0<x<4),矩形EFGH的面積為S米2
(1)求S與x的函數(shù)關(guān)系式;
(2)學校準備在矩形內(nèi)種植紅色花草,四個三角形內(nèi)種植黃色花草.已知紅色花草的價格為20元/米2,黃色花草的價格為40元/米2.當x為何值時,購買花草所需的總費用最低,并求出最低總費用(結(jié)果保留根號)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•高安市二模)如圖,在下列矩形ABCD中,已知:AB=a,BC=b(a<b),假定頂點在矩形邊上的菱形叫做矩形的內(nèi)接菱形,現(xiàn)給出(Ⅰ)、(Ⅱ)、(Ⅲ)三個命題:
命題(Ⅰ):圖①中,若AH=BG=AB,則四邊形ABGH是矩形ABCD的內(nèi)接菱形;
命題(Ⅱ):圖②中,若點E、F、G和H分別是AB、BC、CD和DE的中點,則四邊形EFGH是矩形ABCD的內(nèi)接菱形;
命題(Ⅲ):圖③中,若EF垂直平分對角線AC,變BC于點E,交AD于點F,交AC于點O,則四邊形AECF是矩形ABCD的內(nèi)接菱形.
請解決下列問題:
(1)命題(Ⅰ)、(Ⅱ)、(Ⅲ)都是真命題嗎?請你在其中選擇一個,并證明它是真命題或假命題;
(2)畫出一個新的矩形內(nèi)接菱形(即與你在(1)中所確認的,但不全等的內(nèi)接菱形).
(3)試探究比較圖①,②,③中的四邊形ABGH、EFGH、AECF的面積大小關(guān)系.

查看答案和解析>>

同步練習冊答案