【題目】耐心算一算(同學們,請你注意解題格式,一定要寫出解題步驟哦!
(1)﹣20+(﹣14)﹣(﹣18)﹣13
(2)
(3)﹣24 ×[5﹣(﹣3)2].

【答案】
(1)

解:原式=﹣20﹣14+18﹣13=﹣20﹣14﹣13+18=﹣47+18=﹣29


(2)

解:原式=﹣4× ×30=﹣6﹣20=﹣26


(3)

解:原式=﹣16﹣ ×(5﹣9)=﹣16﹣ ×(﹣4)=﹣16+2=﹣14


【解析】(1)首先對式子進行化簡,然后正、負數(shù)分別相加,然后把所得結(jié)果相加即可;(2)首先計算乘法、除法,然后進行加減即可;(3)首先計算乘方,然后計算括號里面的式子,最后進行加減即可.
【考點精析】關(guān)于本題考查的有理數(shù)的四則混合運算,需要了解在沒有括號的不同級運算中,先算乘方再算乘除,最后算加減才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】

如圖,已知點D在反比例函數(shù)y=的圖象上,過點D作x軸的平行線交y軸于點B(0,3).過點A(5,0)的直線y=kx+b與y軸于點C,且BD=OC,tan∠OAC=

(1)求反比例函數(shù)y=和直線y=kx+b的解析式;

(2)連接CD,試判斷線段AC與線段CD的關(guān)系,并說明理由;

(3)點E為x軸上點A右側(cè)的一點,且AE=OC,連接BE交直線CA與點M,求∠BMC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一只貓頭鷹蹲在一棵樹ACB(點BAC上)處,發(fā)現(xiàn)一只老鼠躲進短墻DF的另一側(cè),貓頭鷹的視線被短墻遮住,為了尋找這只老鼠,它又飛至樹頂C處,已知短墻高DF=4米,短墻底部D與樹的底部A的距離為2.7米,貓頭鷹從C點觀測F點的俯角為53°,老鼠躲藏處M(點MDE上)距D點3米.(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80tan37°≈0.75

(1)貓頭鷹飛至C處后,能否看到這只老鼠?為什么?

(2)要捕捉到這只老鼠,貓頭鷹至少要飛多少米(精確到0.1米)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合題。
(1)計算:12×(﹣ )+8×22﹣(﹣1)0;
(2)化簡:(x﹣3y)2+3y(2x﹣3y)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二元一次方程2x+y=7的正整數(shù)解有多少組(
A.2
B.3
C.5
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】火車在筆直的鐵路上開動,火車頭以100千米/時的速度前進了半小時,則車尾走的路程是(

A. 100千米 B. 50千米 C. 200千米 D. 無法計算

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列圖形經(jīng)過平移后恰好可以與原圖形組合成一個長方形的是(

A. 三角形 B. 正方形 C. 梯形 D. 都有可能

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】教材中有如下一段文字: 思考
如圖,把一長一短的兩根木棍的一端固定在一起,擺出△ABC,固定住長木棍,轉(zhuǎn)動短木棍,得到△ABD,這個實驗說明了什么?
如圖中的△ABC與△ABD滿足兩邊和其中一邊的對角分別相等,即AB=AB,AC=AD,∠B=∠B,但△ABC與△ABD不全等.這說明,有兩邊和其中一邊的對角分別相等的兩個三角形不一定全等.
小明通過對上述問題的再思考,提出:兩邊分別相等且這兩邊中較大邊所對的角相等的兩個三角形全等.請你判斷小明的說法 . (填“正確”或“不正確”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】PM2.5是大氣壓中直徑小于或等于0.0000025m的顆粒物,0.0000025用科學記數(shù)法表示為_____

查看答案和解析>>

同步練習冊答案