已知△ABC為等邊三角形,過AC邊上的點DDEAB,交BCE,在ED的延長線上取點F,使DF=DA,連FC, BD

(1)求證:△CEF≌△DCB

(2)過點FFGDB,交AB于點G,連接CG,請你先補全圖形,然后判斷△CFG的形狀,并證明.

(1)證明:∵EFAB, △ABC為等邊三角形

∴∠CED=∠CBA=∠ACB=60°,AC=BC

∴△CDE為等邊三角形      …………  1分

CE=DE=CD

AD=BE                  …………  2分

又∵FD=AD

FD=EB

FD+DE=EB+CE

EF=BC                 …………  3分

又∵∠FEC=∠BCD

∴△CEF≌△DCB(SAS)   …………  4分

(2)(畫圖略)

CFG為等邊三角形        …………  5分

證明:∵FGDB,F(xiàn)DGB

∴四邊形FGBD為平行四邊形

FG=DB, ∠DFG=∠DBG         …………  6分

∵△CEF≌△DCB

∴∠EFC=CBD,F(xiàn)C=DB

∴∠EFC+∠GFE=ABD+∠CBD=∠CBA=60° …………  8分

FC=FG

∴△CFG為等邊三角形.                    …………  9分

【相關(guān)知識點】全等三角形的判定、平行線的性質(zhì)、平行四邊形的性質(zhì)、等邊三角形的性質(zhì)和判定

【解題思路】(1)利用“SAS”全等三角形的判定方法證明;(2)利用平行四邊形的性質(zhì):對邊相等,對角相等證明.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知△ABC是等邊三角形,⊙O為它的外接圓,點P是
BC
上任一點.
(1)圖中與∠PBC相等的角為
 
;
(2)試猜想出三條線段PA、PB、PC之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

三角形外心我們可以理解為:到三角形三個頂點距離相等的點稱三角形的外心,由此,我們定義:到三角形的兩個頂點距離相等的點,叫做此三角形的準外心.
舉例:如圖1,若PA=PB,則點P為△ABC的準外心.
(1)應用:如圖2,CD為等邊三角形ABC的高,準外心P在高CD上,且PD=
12
AB,求∠APB的度數(shù).
(2)探究:已知△ABC為直角三角形,斜邊BC=5,AB=3,準外心P在AC邊上,試探究PA的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知D是等邊△ABC外一點,∠BDC=120°,則AD、BD、DC三條線段的數(shù)量關(guān)系為
AD=BD+DC
AD=BD+DC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知△ABC是等邊三角形,⊙O為它的外接圓,點P是數(shù)學公式上任一點.
(1)圖中與∠PBC相等的角為______;
(2)試猜想出三條線段PA、PB、PC之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年廣東省廣州市花都區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

(2009•花都區(qū)二模)已知△ABC是等邊三角形,⊙O為它的外接圓,點P是上任一點.
(1)圖中與∠PBC相等的角為______;
(2)試猜想出三條線段PA、PB、PC之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

同步練習冊答案