(2013•內江)如圖,某校綜合實踐活動小組的同學欲測量公園內一棵樹DE的高度,他們在這棵樹的正前方一座樓亭前的臺階上A點處測得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺階下的點C處,測得樹頂端D的仰角為60°.已知A點的高度AB為3米,臺階AC的坡度為1:
3
(即AB:BC=1:
3
),且B、C、E三點在同一條直線上.請根據(jù)以上條件求出樹DE的高度(側傾器的高度忽略不計).
分析:過點A作AF⊥DE于F,可得四邊形ABEF為矩形,設DE=x,在Rt△DCE和Rt△ABC中分別表示出CE,BC的長度,求出DF的長度,然后在Rt△ADF中表示出AF的長度,根據(jù)AF=BE,代入解方程求出x的值即可.
解答:解:如圖,過點A作AF⊥DE于F,
則四邊形ABEF為矩形,
∴AF=BE,EF=AB=3,
設DE=x,
在Rt△CDE中,CE=
DE
tan60°
=
3
3
x,
在Rt△ABC中,
AB
BC
=
1
3
,AB=3,
∴BC=3
3
,
在Rt△AFD中,DF=DE-EF=x-3,
∴AF=
x-3
tan30°
=
3
(x-3),
∵AF=BE=BC+CE,
3
(x-3)=3
3
+
3
3
x,
解得x=9.
答:樹高為9米.
點評:本題考查了解直角三角形的應用,解題的關鍵是正確的構造直角三角形并選擇正確的邊角關系解直角三角形,難度一般.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•內江)如圖,AB是半圓O的直徑,點P在BA的延長線上,PD切⊙O于點C,BD⊥PD,垂足為D,連接BC.
(1)求證:BC平分∠PBD;
(2)求證:BC2=AB•BD;
(3)若PA=6,PC=6
2
,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•內江)如圖,反比例函數(shù)y=
k
x
(x>0)的圖象經(jīng)過矩形OABC對角線的交點M,分別于AB、BC交于點D、E,若四邊形ODBE的面積為9,則k的值為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•內江)如圖,正六邊形硬紙片ABCDEF在桌面上由圖1的起始位置沿直線l不滑行地翻滾一周后到圖2位置,若正六邊形的邊長為2cm,則正六邊形的中心O運動的路程為
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•內江)如圖,已知直線l:y=
3
x,過點M(2,0)作x軸的垂線交直線l于點N,過點N作直線l的垂線交x軸于點M1;過點M1作x軸的垂線交直線l于N1,過點N1作直線l的垂線交x軸于點M2,…;按此作法繼續(xù)下去,則點M10的坐標為
(2097152,0)
(2097152,0)

查看答案和解析>>

同步練習冊答案