作业宝如圖,已知AC⊥BC,BD⊥AD,垂足分別為C,D,AC=BD.求證△ABC≌△BAD要用到的判定方法是


  1. A.
    SSA
  2. B.
    HL
  3. C.
    SAS
  4. D.
    SSS
B
分析:根據(jù)條件AC=BD,再由條件公共邊AB,可利用HL定理證明△ABC≌△BAD.
解答:∵AC⊥BC,BD⊥AD,
∴∠D=∠C=90°,
在Rt△ADB和Rt△BCA中,
∴Rt△ADB≌Rt△BCA(HL),
故選:B.
點評:本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖,已知AC⊥BC,CD⊥AB,DE⊥AC,∠1+∠2=180°,要證HF⊥AB,請完善證明過程,并在括號內(nèi)填上相應(yīng)依據(jù):
∵AC⊥BC,DE⊥AC,(已知)
∴DE∥BC (在同一平面內(nèi),垂直于同一條直線的兩條直線平行)
∴∠
1
=∠
DCB
兩直線平行,內(nèi)錯角相等

∵∠1+∠2=180° (已知)
∴∠
DCB
+∠
2
=180°
CD
FH
同旁內(nèi)角互補,兩直線平行

∵CD⊥AB(已知)
∴∠CDB=∠HFB=90° (
兩直線平行,同位角相等

∴HF⊥AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•肇慶)如圖,已知AC⊥BC,BD⊥AD,AC與BD交于O,AC=BD.
求證:(1)BC=AD;
(2)△OAB是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AC=BC,∠1=∠2,點D、E分別在CA、CB的延長線上.
求證:CD=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AC⊥BC,CD⊥AB,DE⊥AC,∠1與∠2互補,判斷HF與AB是否垂直,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AC⊥BC,CD⊥AB于點D,AC=5cm,BC=12cm,AB=13cm,那么點B到AC的距離是
12
12
cm.

查看答案和解析>>

同步練習冊答案