若實(shí)數(shù)a,b,c在數(shù)軸上的位置如圖所示,則化簡=   
【答案】分析:根據(jù)數(shù)軸的特點(diǎn),確定a、b、c的符號(hào),并求出a+b,b-c,c-a的符號(hào),解答即可.
解答:解:由實(shí)數(shù)a,b,c在數(shù)軸上的位置可知:
a<b<0<c,

=|a|-|a+b|+|b-c|+|c-a|
=-a+a+b+c-b+c-a
=2c-a.
點(diǎn)評(píng):本題主要考查二次根式的化簡方法與運(yùn)用:
a>0時(shí),=a;
a<0時(shí),=-a;
a=0時(shí),=0.
解決此類題目的關(guān)鍵是熟練掌握二次根式、絕對(duì)值等考點(diǎn)的運(yùn)算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•長寧區(qū)二模)若實(shí)數(shù)x、y滿足:|x|>|y|,則稱:x比y遠(yuǎn)離0.如圖,已知A、B、C、D、E五點(diǎn)在數(shù)軸上對(duì)應(yīng)的實(shí)數(shù)分別是a、b、c、d、e.若從這五個(gè)數(shù)中隨機(jī)選一個(gè)數(shù),則這個(gè)數(shù)比其它數(shù)都遠(yuǎn)離0的概率是
0
0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

所謂配方法其實(shí)就是逆用完全平方公式,即a2±2ab+b2=(a±b)2.該方法在數(shù)、式、方程等多方面應(yīng)用非常廣泛,如3+2
2
=12+2
2
+(
2
2;x2+2x+5=x2+2x+1+4=(x+1)2+4等等.請你用配方法解決以下問題:
(1)解方程:x2=5+2
6
;(不能出現(xiàn)形如
5+2
6
的雙重二次根式)
(2)若a2+4b2+c2-2a-8b+10c+30=0,解關(guān)于x的一元二次方程ax2-bx+c=0;
(3)求證:不論m為何值,解關(guān)于x的一元二次方程x2+(m-1)x+m-3=0總有兩個(gè)不等實(shí)數(shù)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

所謂配方法其實(shí)就是逆用完全平方公式,即a2±2ab+b2=(a+b)2.該方法在數(shù)、式、方程等多方面應(yīng)用非常廣泛,如
3+2
2
=12+2
2
+(
2
2=(1+
2
2;x2+2x+5=x2+2x+1+4=(x+1)2+4等等.請你用配方法解決以下問題:
(1)解方程:x2=5+2
6
;(不能出現(xiàn)形如
5+2
6
的雙重二次根式)
(2)求證:不論m為何值,解關(guān)于x的一元二次方程x2+(m-1)x+m-3=0總有兩個(gè)不等實(shí)數(shù)根.
(3)若a2+4b2+c2-2a-8b+10c+30=0,解關(guān)于x的一元二次方程ax2-bx+c=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

所謂配方法其實(shí)就是逆用完全平方公式,即.該方法在數(shù)、式、方程等多方面應(yīng)用非常廣泛,如;=等等.請你用配方法解決以下問題:

1.解方程:;(不能出現(xiàn)形如的雙重二次根式)

2.)若,解關(guān)于x的一元二次方程

3.求證:不論m為何值,解關(guān)于x的一元二次方程總有兩個(gè)不等實(shí)數(shù)根

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

所謂配方法其實(shí)就是逆用完全平方公式,即.該方法在數(shù)、式、方程等多方面應(yīng)用非常廣泛,如;=等等.請你用配方法解決以下問題:
【小題1】解方程:;(不能出現(xiàn)形如的雙重二次根式)
【小題2】)若,解關(guān)于x的一元二次方程;
【小題3】求證:不論m為何值,解關(guān)于x的一元二次方程總有兩個(gè)不等實(shí)數(shù)根

查看答案和解析>>

同步練習(xí)冊答案