作业宝如圖,點E是∠AOB的平分線上一點,EC⊥OA,ED⊥OB,垂足分別為C、D.
求證:(1)∠ECD=∠EDC;
(2)OC=OD;
(3)OE是線段CD的垂直平分線.

證明:(1)∵OE平分∠AOB,EC⊥OA,ED⊥OB,
∴ED=EC,即△CDE為等腰三角形,
∴∠ECD=∠EDC;

(2)∵點E是∠AOB的平分線上一點,EC⊥OA,ED⊥OB,
∴∠DOE=∠COE,∠ODE=∠OCE=90°,OE=OE,
∴Rt△OED≌Rt△OEC(HL),
∴OC=OD;

(3)在△DOF和△COF中,

∴△DOF≌△COF,
∴DF=FC,
∵ED=EC,
∴OE是線段CD的垂直平分線.
分析:(1)根據(jù)角平分線性質可證ED=EC,從而可知△CDE為等腰三角形,可證∠ECD=∠EDC;
(2)由OE平分∠AOB,EC⊥OA,ED⊥OB,OE=OE,可證△OED≌△OEC,可得OC=OD;
(3)根據(jù)SAS證出△DOF≌△COF,得出DF=FC,再根據(jù)ED=EC,OC=OD,可證OE是線段CD的垂直平分線.
點評:本題考查了角平分線性質,線段垂直平分線的判定,等腰三角形的判定,三角形全等的相關知識.關鍵是明確圖形中相等線段,相等角,全等三角形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

63、如圖,點P是∠AOB的平分線上的一點,作PD⊥OA,垂足為D,PE⊥OB垂足為E,DE交OC于點F.則在圖中:
(1)總共有
3
對全等三角形;
(2)總共
8
個直角.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、如圖,點E是∠AOB的平分線上一點,EC⊥OA,ED⊥OB,垂足分別為C、D.
求證:(1)∠ECD=∠EDC;
(2)OC=OD;
(3)OE是線段CD的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、作圖題:如圖,點P是∠AOB內一點.
(1)過點p畫一條直線平行于BO;(2)過點P畫一條直線垂直于AO.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點P是∠AOB內的一點,過點P作PC∥OB,PD∥OA,分別交OA、OB于點C、D,且PE⊥OA,精英家教網PF⊥OB,垂足分別為點E、F.
(1)求證:OC•CE=OD•DF;
(2)當點P位于∠AOB的什么位置時,四邊形CODP是菱形并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點P是∠AOB內部一點,點P關于OA、OB的對稱點是H、G,直線HG交OA、OB于點C、D,若HG=4cm,且∠AOB=30°,則△HOG的周長是
12
12
cm.

查看答案和解析>>

同步練習冊答案