(2010•菏澤)如圖所示,在正方形鐵皮中,剪下一個圓和一個扇形,使余料盡量少.用圓做圓錐的底面,用扇形做圓錐的側面,正好圍成一個圓錐,若圓的半徑為r,扇形的半徑為R,那么( )

A.R=2r
B.R=r
C.R=3r
D.R=4r
【答案】分析:讓扇形的弧長等于圓的周長即可.
解答:解:根據(jù)扇形的弧長等于圓的周長,
∴扇形弧長等于小圓的周長,
即:=2πr,
解得R=4r,故選D.
點評:考查了扇形的弧長公式;圓的周長公式;用到的知識點為:圓錐的弧長等于底面周長.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2011年廣東省廣州市初中畢業(yè)班數(shù)學科綜合練習卷(解析版) 題型:解答題

(2010•菏澤)如圖所示,拋物線y=ax2+bx+c經(jīng)過原點O,與x軸交于另一點N,直線y=kx+4與兩坐標軸分別交于A、D兩點,與拋物線交于B(1,m)、C(2,2)兩點.
(1)求直線與拋物線的解析式;
(2)若拋物線在x軸上方的部分有一動點P(x,y),設∠PON=α,求當△PON的面積最大時tanα的值;
(3)若動點P保持(2)中的運動路線,問是否存在點P,使得△POA的面積等于△PON面積的?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2010•菏澤)如圖所示,拋物線y=ax2+bx+c經(jīng)過原點O,與x軸交于另一點N,直線y=kx+4與兩坐標軸分別交于A、D兩點,與拋物線交于B(1,m)、C(2,2)兩點.
(1)求直線與拋物線的解析式;
(2)若拋物線在x軸上方的部分有一動點P(x,y),設∠PON=α,求當△PON的面積最大時tanα的值;
(3)若動點P保持(2)中的運動路線,問是否存在點P,使得△POA的面積等于△PON面積的?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年山東省菏澤市中考數(shù)學試卷(解析版) 題型:解答題

(2010•菏澤)如圖所示,拋物線y=ax2+bx+c經(jīng)過原點O,與x軸交于另一點N,直線y=kx+4與兩坐標軸分別交于A、D兩點,與拋物線交于B(1,m)、C(2,2)兩點.
(1)求直線與拋物線的解析式;
(2)若拋物線在x軸上方的部分有一動點P(x,y),設∠PON=α,求當△PON的面積最大時tanα的值;
(3)若動點P保持(2)中的運動路線,問是否存在點P,使得△POA的面積等于△PON面積的?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年廣東省茂名市化州市文樓鎮(zhèn)第一中學中考數(shù)學二模試卷(解析版) 題型:選擇題

(2010•菏澤)如圖是一個由多個相同小正方體堆積而成的幾何體的俯視圖,圖中所示數(shù)字為該位置小正方體的個數(shù),則這個幾何體的左視圖是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年吉林省通化市中考數(shù)學試卷(解析版) 題型:解答題

(2010•菏澤)如圖所示,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分線,CD=5cm,求AB的長.

查看答案和解析>>

同步練習冊答案