如圖,在□ABCD中,∠ODA= 90°,AC=10 cm,BD=6 cm,則AD的長為   (     )
A.4 cmB.5 cmC.6 cmD.8 cm
A.

試題分析:∵四邊形ABCD是平行四邊形,AC=10cm,BD=6cm
∴OA=OC=AC=5cm,OB=OD=BD=3cm,
∵∠ODA=90°,
∴AD==4cm.
故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀下面材料:
如果一個(gè)三角形和一個(gè)平行四邊形滿足條件:三角形的一邊與平行四邊形的一邊重合,三角形這邊所對的頂點(diǎn)在平行四邊形這邊的對邊上,則稱這樣的平行四邊形為三角形的“友好平行四邊形”.如圖1 所示,平行四邊形ABCD即為△ABC的“友好平行四邊形”.
請解決下列問題:
(1)仿照以上敘述,說明什么是一個(gè)三角形的“友好矩形”;
(2)若△ABC是鈍角三角形,則△ABC顯然只有一個(gè)“友好矩形”, 若△ABC是直角三角形,其“友好矩形”有           個(gè);
(3)若△ABC是銳角三角形,且,如圖2,請畫出△ABC的所有“友好矩形”;指出其中周長最小的“友好矩形”并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在△ABC中,E、D分別為AB、AC上的點(diǎn),且ED//BC,O為DC中點(diǎn),連結(jié)EO并延長交BC的延長線于點(diǎn)F,則有S四邊形EBCD=SEBF.
(1)如圖2,在已知銳角∠AOB內(nèi)有一個(gè)定點(diǎn)P.過點(diǎn)P任意作一條直線MN,分別交射線OA、OB于點(diǎn)M、N.將直線MN繞著點(diǎn)P旋轉(zhuǎn)的過程中發(fā)現(xiàn),當(dāng)直線MN滿足某個(gè)條件時(shí),△MON的面積存在最小值.直接寫出這個(gè)條件:_______________________.
(2)如圖3,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A、B、C、P的坐標(biāo)分別為(6,0)、(6,3)、()、(4、2),過點(diǎn)P的直線l與四邊形OABC一組對邊相交,將四邊形OABC分成兩個(gè)四邊形,求其中以點(diǎn)O為頂點(diǎn)的四邊形面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知:AB∥CD,BE⊥AD,垂足為點(diǎn)E,CF⊥AD,垂足為點(diǎn)F,并且AE=DF.
求證:四邊形BECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知⊙O的半徑為1,DE是⊙O的直徑,過點(diǎn)D作⊙O的切線AD,C是AD的中點(diǎn),AE交⊙O于B點(diǎn),四邊形BCOE是平行四邊形.
(1)求AD的長;
(2)BC是⊙O的切線嗎?若是,給出證明;若不是,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

矩形的兩條對角線所成的鈍角為120°,若一條對角線的長是2,那么它的周長是(   )
A.6B.C.2(1+D.1+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在等邊△ABC中,點(diǎn)D是BC邊的中點(diǎn),以AD為邊作等邊△ADE

(1)求∠CAE的度數(shù);
(2)取AB邊的中點(diǎn)F,連結(jié)CF、CE,試證明四邊形AFCE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在矩形ABCD中,BC=20cm,點(diǎn)P和點(diǎn)Q分別從點(diǎn)B和點(diǎn)D出發(fā),按逆時(shí)針方向沿矩形ABCD的邊運(yùn)動(dòng),點(diǎn)P和點(diǎn)Q的速度分別為3cm/s和2cm/s,則最快_______s后,四邊形ABPQ成為矩形..

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在四邊形ABCD中,AB⊥BC,∠A=∠C=100°,則∠D的度數(shù)是 (   )
A.60°B.70°C.90°D.100°

查看答案和解析>>

同步練習(xí)冊答案