(2003•舟山)如圖,在△ABC中,D、E分別為AB、AC的中點(diǎn),若△ABC的面積為12cm2,則△ADE的面積為( )

A.2cm2
B.3cm2
C.4cm2
D.6cm2
【答案】分析:由于D、E是AB、AC的中點(diǎn),因此DE是△ABC的中位線,由此可得△ADE和△ABC相似,且相似比為1:2;根據(jù)相似三角形的面積比等于相似比的平方,可求出△ABC的面積.
解答:解:∵點(diǎn)D,E分別是△ABC的邊AB,AC的中點(diǎn),
∴DE是△ABC的中位線,
∴DE∥BC,DE=BC,AD=AB,AE=AC,
===,
∴△ADE∽△ABC,相似比為,
故S△ADE:S△ABC=1:4,
即S△ADE=S△ABC=×12=3cm2
故本題選B.
點(diǎn)評(píng):本題主要考查對(duì)相似三角形性質(zhì)及三角形的中位線定理的理解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2003年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(02)(解析版) 題型:填空題

(2003•舟山)如圖,直線y=x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,AB⊥BC,且點(diǎn)C在x軸上,若拋物線y=ax2+bx+c以C為頂點(diǎn),且經(jīng)過(guò)點(diǎn)B,則這條拋物線的關(guān)系式為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年浙江省舟山市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2003•舟山)如圖,直線y=x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,AB⊥BC,且點(diǎn)C在x軸上,若拋物線y=ax2+bx+c以C為頂點(diǎn),且經(jīng)過(guò)點(diǎn)B,則這條拋物線的關(guān)系式為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2003•舟山)如圖,⊙A和⊙B是外離兩圓,⊙A的半徑長(zhǎng)為2,⊙B的半徑長(zhǎng)為1,AB=4,P為連接兩圓圓心的線段AB上的一點(diǎn),PC切⊙A于點(diǎn)C,PD切⊙B于點(diǎn)D.
(1)若PC=PD,求PB的長(zhǎng).
(2)試問(wèn)線段AB上是否存在一點(diǎn)P,使PC2+PD2=4?如果存在,問(wèn)這樣的P點(diǎn)有幾個(gè)并求出PB的值;如果不存在,說(shuō)明理由.
(3)當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng)到某處,使PC⊥PD時(shí),就有△APC∽△PBD.請(qǐng)問(wèn):除上述情況外,當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng)到何處(說(shuō)明PB的長(zhǎng)為多少;或PC、PD具有何種關(guān)系)時(shí),這兩個(gè)三角形仍相似;并判斷此時(shí)直線CP與⊙B的位置關(guān)系,證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年浙江省舟山市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2003•舟山)如圖是人字型屋架的設(shè)計(jì)圖,由AB,AC,BC,AD四根鋼條焊接而成,其中A,B,C,D均為焊接點(diǎn),且AB=AC,D為BC的中點(diǎn),現(xiàn)在焊接所需的四根鋼條已截好,且已標(biāo)出BC的中點(diǎn),如果接工身邊只有檢驗(yàn)直角的角尺,那么為了準(zhǔn)確快速地焊接,他首先應(yīng)取的兩根鋼條及焊接點(diǎn)是( )

A.AB和BC焊接點(diǎn)B
B.AB和AC焊接點(diǎn)A
C.AB和AD焊接點(diǎn)A
D.AD和BC焊接點(diǎn)D

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年浙江省舟山市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2003•舟山)如圖,用8塊相同的長(zhǎng)方形地磚拼成一個(gè)矩形地面,則每塊長(zhǎng)方形地磚的長(zhǎng)和寬分別是( )

A.48cm,12cm
B.48cm,16cm
C.44cm,16cm
D.45cm,15cm

查看答案和解析>>

同步練習(xí)冊(cè)答案