證法一:連接EF交AD于G,
∵AD平分∠BAC,
∴∠EAD=∠FAD.
在Rt△ADE和Rt△ADF中
,
∴Rt△ADE≌Rt△ADF(AAS).
∴AE=AF(全等三角形對應(yīng)邊相等).
∴在△AGE和△AGF中,
.
∴△AGE≌△AGF(SAS).
∴∠AGE=∠AGF,EG=FG.
又∵∠AGE+∠AGF=180°,
∴∠AGE=∠AGF=90°.
∴AD垂直平分EF.
∴E,F(xiàn)關(guān)于AD對稱(如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱).
證法二:連接EF交AD于G,
∵AD平分∠BAC,
∴∠EAD=∠FAD.
在Rt△ADE和Rt△ADF中
,
∴Rt△ADE≌Rt△ADF(AAS).
∴AE=AF(全等三角形對應(yīng)邊相等).
∴AD垂直平分EF(三線合一).
∴E,F(xiàn)關(guān)于AD對稱(如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱).
分析:先證明Rt△ADE≌Rt△ADF,再證明△AGE≌△AGF,所以AD垂直平分EF,∴E,F(xiàn)關(guān)于AD對稱(如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱).
點評:要想證明其對稱,就要證明那兩條線段相等,且與AD垂直.