已知,如圖AB∥CD,∠D=30°,AD=10,則AB與CD之間的距離為________.

5
分析:過點A作AE⊥CD于E,根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出AE的長,再根據(jù)平行線間的距離的定義解答.
解答:解:如圖,過點A作AE⊥CD于E,
∵∠D=30°,AD=10,
∴AE=AD=×10=5,
∵AB∥CD,
∴AB與CD之間的距離為5.
故答案為:5.
點評:本題考查了直角三角形30°角所對的直角邊等于斜邊的一半的性質(zhì),作輔助線.構(gòu)造出直角三角形是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

5、已知,如圖AB=CD,BC=AD,∠B=23°,則∠D=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、完成下面的證明.
已知:如圖AB=CD,BE=CF,AF=DE.求證:△ABE≌△DCF.

證明:∵AF=DE(已知)
∴AF-EF=DE-EF(
等式性質(zhì)
)即AE=DF
在△ABE和△DCF中
∵AB=CD,BE=CF(
已知

AE=DF(
已證

∴△ABE≌△DCF(
SSS
).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖AB∥CD,∠1=∠A,∠2=∠C,B、E、D在一條直線上.
求∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、填寫下列推理中的空格
已知:如圖AB∥CD,EC∥FB
求證:∠B+∠C=180°
證明:∵AB∥CD   (已知)
∴∠
BGC
+∠C=180°(兩直線平行,同旁內(nèi)角互補)
EC∥FB
(已知)
∴∠B=∠BGC (
兩直線平行,內(nèi)錯角相等

∴∠B+∠C=180°(
等量代換

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖AB∥CD,∠1=∠2,EP⊥FP,則以下錯誤的是( 。

查看答案和解析>>

同步練習(xí)冊答案