如圖,AB是⊙O的弦,D為半徑OA的中點(diǎn),過D作CD⊥OA交弦于點(diǎn)E,交⊙O于點(diǎn)F,且CE=CB.(4分+4分+4分)
(1)求證:BC是⊙O的切線;
(2)連接AF、BF,求∠ABF的度數(shù);
(3)如果CD=15,BE=10,,求⊙O的半徑.
解答: (1)證明:連接OB∵OB=OA,CE=CB,∴∠A=∠OBA,∠CEB=∠ABC
又∵CD⊥OA ∴∠A+∠AED=∠A+∠CEB=90°∴∠OBA+∠ABC=90°
∴OB⊥BC ∴BC是⊙O的切線.
(2)解:如圖1,連接OF,AF,BF,∵DA=DO,CD⊥OA,
∴AF=OF,∵OA=OF,∴△OAF是等邊三角形,∴∠AOF=60°∴∠ABF=∠AOF=30°;
(3)解:如圖2,過點(diǎn)C作CG⊥BE于G,∵CE=CB,∴EG=BE=5,
∵∠ADE=∠CGE=90°,∠AED=∠GEC,∴∠GCE=∠A,∴△ADE∽△CGE,
在RtECG中,∵CG==12,∵CD=15,CE=13,∴DE=2,
∵△ADE∽△CGE,∴,∴AD=,CG=,∴⊙O的半徑OA=2AD=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖6所示,在等腰△ABC中,∠BAC=120°,若EM和FN分別垂直平分AB和AC,垂足分別為E、F、M、N都在BC邊上,且EM=FN=4,則BC的長(zhǎng)度為( )
A.12 B.16 C.20 D.24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,AB是⊙O的直徑,BC是⊙O的弦,半徑OD⊥BC,垂足為E,若BC=6,DE=3.
求:(1) ⊙O的半徑;(2)弦AC的長(zhǎng);(3)陰影部分的面積.
(3分+3分+4分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖所示,在數(shù)軸上點(diǎn)A所表示的數(shù)x的范圍是( )
A.sin30°<x<sin60°;B.cos30°<x< cos45°;
C.tan30°<x<tan45°;D.3cos60°<x<tan60°。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,拋物線y=x2+mx+n與直線y=﹣x+3交于A,B兩點(diǎn),交x軸與D,C兩點(diǎn),連接AC,BC,已知A(0,3),C(3,0).
(Ⅰ)求拋物線的解析式和tan∠BAC的值;
(Ⅱ)在(Ⅰ)條件下:
(1)P為y軸右側(cè)拋物線上一動(dòng)點(diǎn),連接PA,過點(diǎn)P作PQ⊥PA交y軸于點(diǎn)Q,問:是否存在點(diǎn)P使得以A,P,Q為頂點(diǎn)的三角形與△ACB相似?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
(2)設(shè)E為線段AC上一點(diǎn)(不含端點(diǎn)),連接DE,一動(dòng)點(diǎn)M從點(diǎn)D出發(fā),沿線段DE以每秒一個(gè)單位速度運(yùn)動(dòng)到E點(diǎn),再沿線段EA以每秒個(gè)單位的速度運(yùn)動(dòng)到A后停止,當(dāng)點(diǎn)E的坐標(biāo)是多少時(shí),點(diǎn)M在整個(gè)運(yùn)動(dòng)中用時(shí)最少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com