作業(yè)寶如圖,△ABC是⊙O的內(nèi)接三角形且AB=AC,BD是⊙O的直徑,過點A做AP∥BC交DB的延長線于點P,連接AD.
(1)求證:AP是⊙O的切線;
(2)若⊙O的半徑是2,cos∠ABC=數(shù)學(xué)公式,求AB的長.

(1)證明:連接AO,
∵AP∥BC,
∴∠3=∠ABC,
∵AB=AC,
∴∠ABC=∠C,
∵∠C=∠D,
∵∠1=∠D,
∵BD是⊙O的直徑,
∴∠1+∠2=90°,
∴∠2+∠3=90°,
∴AP是⊙O的切線;

(2)解:由(1)得:∠ABC=∠D,
∵⊙O的半徑是2,cos∠ABC=,
∴BD=4,cos∠ABC=cosD=,
=,
解得:AD=3,
∴AB===
分析:(1)根據(jù)等腰三角形的性質(zhì)以及圓周角定理得出∠3=∠1,進(jìn)而得出∠2+∠3=90°,即可得出答案;
(2)利用銳角三角函數(shù)關(guān)系得出cos∠ABC=cosD=,進(jìn)而得出AD的長,再利用勾股定理求出AB的長.
點評:此題主要考查了勾股定理以及銳角三角函數(shù)關(guān)系和圓周角定理以及切線的判定等知識,正確轉(zhuǎn)化角度得出cos∠ABC=cosD=是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是邊長為2的等邊三角形,將△ABC沿射線BC向右平移到△DCE,連接AD、BD,下列結(jié)論錯誤的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC是銳角三角形,以BC為直徑作⊙O,AD是⊙O的切線,從AB上一點E作AB的垂線交AC的延長線于F,若
AB
AF
=
AE
AC

求證:AD=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•玉林)如圖,△ABC是⊙O內(nèi)接正三角形,將△ABC繞點O順時針旋轉(zhuǎn)30°得到△DEF,DE分別交AB,AC于點M,N,DF交AC于點Q,則有以下結(jié)論:①∠DQN=30°;②△DNQ≌△ANM;③△DNQ的周長等于AC的長;④NQ=QC.其中正確的結(jié)論是
①②③
①②③
.(把所有正確的結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是等邊三角形,D是BC邊的中點,點E在AC的延長線上,且∠CDE=30°.若AD=5,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是等邊三角形,則∠ABD=
120
120
度.

查看答案和解析>>

同步練習(xí)冊答案