(2012•北京)在平面直角坐標系xOy中,我們把橫、縱坐標都是整數(shù)的點叫做整點.已知點A(0,4),點B是x軸正半軸上的整點,記△AOB內(nèi)部(不包括邊界)的整點個數(shù)為m.當m=3時,點B的橫坐標的所有可能值是
3或4
3或4
;當點B的橫坐標為4n(n為正整數(shù))時,m=
6n-3
6n-3
(用含n的代數(shù)式表示).
分析:根據(jù)題意畫出圖形,根據(jù)圖形可得當點B的橫坐標為8時,n=2時,此時△AOB所在的四邊形內(nèi)部(不包括邊界)每一行的整點個數(shù)為4×2+1-2,共有3行,所以此時△AOB所在的四邊形內(nèi)部(不包括邊界)的整點個數(shù)為(4×2+1-2)×3,因為四邊形內(nèi)部在AB上的點是3個,所以此時△AOB內(nèi)部(不包括邊界)的整點個數(shù)為m=
(4×2+1-2)×3-3
2
=9,據(jù)此規(guī)律即可得出點B的橫坐標為4n(n為正整數(shù))時,m的值.
解答:解:如圖:

當點B在(3,0)點或(4,0)點時,△AOB內(nèi)部(不包括邊界)的整點為(1,1)(1,2)(2,1),共三個點,
所以當m=3時,點B的橫坐標的所有可能值是3或4;
當點B的橫坐標為8時,n=2時,△AOB內(nèi)部(不包括邊界)的整點個數(shù)m=
(4×2+1-2)×3-3
2
=9,
當點B的橫坐標為12時,n=3時,△AOB內(nèi)部(不包括邊界)的整點個數(shù)m=
(4×3+1-2)×3-3
2
=15,
所以當點B的橫坐標為4n(n為正整數(shù))時,m=
(4×n+1-2)×3-3
2
=6n-3;
另解:網(wǎng)格點橫向一共3行,豎向一共是4n-1列,所以在y軸和4n點形成的矩形內(nèi)部一共有3(4n-1)個網(wǎng)格點,而這條連線為矩形的對角線,與3條橫線有3個網(wǎng)格點相交,所以要減掉3點,總的來說就是矩形內(nèi)部網(wǎng)格點減掉3點的一半,即為[3(4n-1)-3]÷2=6n-3.
故答案為:3或4,6n-3.
點評:此題考查了點的坐標,關(guān)鍵是根據(jù)題意畫出圖形,找出點B的橫坐標與△AOB內(nèi)部(不包括邊界)的整點m之間的關(guān)系,考查數(shù)形結(jié)合的數(shù)學思想方法.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•北京)在平面直角坐標系xOy中,對于任意兩點P1(x1,y1)與P2(x2,y2)的“非常距離”,給出如下定義:
若|x1-x2|≥|y1-y2|,則點P1與點P2的“非常距離”為|x1-x2|;
若|x1-x2|<|y1-y2|,則點P1與點P2的“非常距離”為|y1-y2|.
例如:點P1(1,2),點P2(3,5),因為|1-3|<|2-5|,所以點P1與點P2的“非常距離”為|2-5|=3,也就是圖1中線段P1Q與線段P2Q長度的較大值(點Q為垂直于y軸的直線P1Q與垂直于x軸的直線P2Q交點).
(1)已知點A(-
1
2
,0),B為y軸上的一個動點,
①若點A與點B的“非常距離”為2,寫出一個滿足條件的點B的坐標;
②直接寫出點A與點B的“非常距離”的最小值;
(2)已知C是直線y=
3
4
x+3上的一個動點,
①如圖2,點D的坐標是(0,1),求點C與點D的“非常距離”的最小值及相應的點C的坐標;
②如圖3,E是以原點O為圓心,1為半徑的圓上的一個動點,求點C與點E的“非常距離”的最小值及相應的點E與點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•北京二模)已知:如圖,在直角坐標系xOy中,點A(8,0)、B(0,6),點C在x軸的負半軸上,AB=AC.動點M在x軸上從點C向點A移動,動點N在線段AB上從點A向點B移動,點M、N同時出發(fā),且移動的速度都為每秒1個單位,移動時間為t秒(0<t<10).
(1)設(shè)△AMN的面積為y,求y關(guān)于t的函數(shù)關(guān)系解析式;
(2)求四邊形MNBC的面積最小是多少?
(3)求時間t為何值時,△AMN是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•北京)如圖,小明同學用自制的直角三角形紙板DEF測量樹的高度AB,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點B在同一直線上.已知紙板的兩條直角邊DE=40cm,EF=20cm,測得邊DF離地面的高度AC=1.5m,CD=8m,則樹高AB=
5.5
5.5
m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•北京)在△ABC中,BA=BC,∠BAC=α,M是AC的中點,P是線段BM上的動點,將線段PA繞點P順時針旋轉(zhuǎn)2α得到線段PQ.
(1)若α=60°且點P與點M重合(如圖1),線段CQ的延長線交射線BM于點D,請補全圖形,并寫出∠CDB的度數(shù);

(2)在圖2中,點P不與點B,M重合,線段CQ的延長線于射線BM交于點D,猜想∠CDB的大。ㄓ煤恋拇鷶(shù)式表示),并加以證明;
(3)對于適當大小的α,當點P在線段BM上運動到某一位置(不與點B,M重合)時,能使得線段CQ的延長線與射線BM交于點D,且PQ=QD,請直接寫出α的范圍.

查看答案和解析>>

同步練習冊答案