【題目】如圖,在△ABC中,AB=3,AC=4,BC=5,P為邊BC上一動點,PE⊥AB于E,PF⊥AC于F,M為EF中點,則AM的最小值為 .
【答案】
【解析】解:∵AB=3,AC=4,BC=5,
∴∠EAF=90°,
∵PE⊥AB于E,PF⊥AC于F,
∴四邊形AEPF是矩形,
∴EF,AP互相平分.且EF=AP,
∴EF,AP的交點就是M點.
∵當(dāng)AP的值最小時,AM的值就最小,
∴當(dāng)AP⊥BC時,AP的值最小,即AM的值最。
∵ AP.BC= AB.AC,
∴AP.BC=AB.AC.
∵AB=3,AC=4,BC=5,
∴5AP=3×4,
∴AP= ,
∴AM= ;
故答案為: .
先根據(jù)矩形的判定得出AEPF是矩形,再根據(jù)矩形的性質(zhì)得出EF,AP互相平分,且EF=AP,再根據(jù)垂線段最短的性質(zhì)就可以得出AP⊥BC時,AP的值最小,即AM的值最小,根據(jù)面積關(guān)系建立等式求出其解即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點F,使EF=AE,連接AF、BE和CF.
(1)請在圖中找出一對全等三角形,用符號“≌”表示,并加以證明;
(2)判斷四邊形ABDF是怎樣的四邊形,并說明理由;
(3)若AB=6,BD=2DC,求四邊形ABEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將Rt△ABC繞直角頂點C順時針旋轉(zhuǎn)90°,得到△A′B′C,連接AA′,若∠B=65°,則∠1的度數(shù)是( )
A.45°
B.25°
C.20°
D.15°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若順次連接四邊形ABCD四邊的中點,得到的圖形是一個矩形,則四邊形ABCD一定是( )
A.矩形
B.菱形
C.對角線相等的四邊形
D.對角線互相垂直的四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點P是∠AOB平分線上一點,PC⊥OA,PD⊥OB,垂足為C,D.
(1)∠PCD=∠PDC嗎?為什么?
(2)OP是CD的垂直平分線嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個多項式4x3y-M可以分解因式得4xy(x2-y2+xy),那么M等于( )
A. 4xy3+4x2y2 B. 4xy3-4x2y2 C. -4xy3+4x2y2 D. -4xy3-4x2y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與x軸,y軸分別交于B,C兩點,拋物線 經(jīng)過B,C兩點,點A是拋物線與x軸的另一個交點.
(1)求出點B和點C的坐標(biāo).
(2)求此拋物線的函數(shù)解析式.
(3)在拋物線x軸上方存在一點P(不與點C重合),使,請求出點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com