【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,直線(xiàn)與x軸、y軸的交點(diǎn)分別為A、B,將∠OBA對(duì)折,使點(diǎn)O的對(duì)應(yīng)點(diǎn)H落在直線(xiàn)AB上,折痕交x軸于點(diǎn)C.
(1)直接寫(xiě)出點(diǎn)C的坐標(biāo),并求過(guò)A、B、C三點(diǎn)的拋物線(xiàn)的解析式;
(2)若拋物線(xiàn)的頂點(diǎn)為D,在直線(xiàn)BC上是否存在點(diǎn)P,使得四邊形ODAP為平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;
(3)設(shè)拋物線(xiàn)的對(duì)稱(chēng)軸與直線(xiàn)BC的交點(diǎn)為T(mén),Q為線(xiàn)段BT上一點(diǎn),直接寫(xiě)出|QA﹣QO|的取值范圍 .
【答案】(1)C的坐標(biāo)為(3,0),;(2)不存在;(3)0≤|QA﹣QO|≤4.
【解析】
試題分析:(1)點(diǎn)A的坐標(biāo)是縱坐標(biāo)為0,得橫坐標(biāo)為8,所以點(diǎn)A的坐標(biāo)為(8,0);
點(diǎn)B的坐標(biāo)是橫坐標(biāo)為0,解得縱坐標(biāo)為6,所以點(diǎn)B的坐標(biāo)為(0,6);
由題意得:BC是∠ABO的角平分線(xiàn),所以O(shè)C=CH,BH=OB=6.
∵AB=10,∴AH=4,設(shè)OC=x,則AC=8﹣x,由勾股定理得:x=3,∴點(diǎn)C的坐標(biāo)為(3,0)
將此三點(diǎn)代入二次函數(shù)一般式,列的方程組即可求得;
(2)求得直線(xiàn)BC的解析式,根據(jù)平行四邊形的性質(zhì),對(duì)角相等,對(duì)邊平行且相等,借助于三角函數(shù)即可求得;
(3)如圖,由對(duì)稱(chēng)性可知QO=QH,|QA﹣QO|=|QA﹣QH|.當(dāng)點(diǎn)Q與點(diǎn)B重合時(shí),Q、H、A三點(diǎn)共線(xiàn),|QA﹣QO|取得最大值4(即為AH的長(zhǎng));設(shè)線(xiàn)段OA的垂直平分線(xiàn)與直線(xiàn)BC的交點(diǎn)為K,當(dāng)點(diǎn)Q與點(diǎn)K重合時(shí),|QA﹣QO|取得最小值0.
試題解析:(1)點(diǎn)C的坐標(biāo)為(3,0).∵點(diǎn)A、B的坐標(biāo)分別為A(8,0),B(0,6),∴可設(shè)過(guò)A、B、C三點(diǎn)的拋物線(xiàn)的解析式為y=a(x﹣3)(x﹣8).將x=0,y=6代入拋物線(xiàn)的解析式,得,∴過(guò)A、B、C三點(diǎn)的拋物線(xiàn)的解析式為;
(2)可得拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn),頂點(diǎn)D的坐標(biāo)為(,),設(shè)拋物線(xiàn)的對(duì)稱(chēng)軸與x軸的交點(diǎn)為G.直線(xiàn)BC的解析式為y=﹣2x+6.
設(shè)點(diǎn)P的坐標(biāo)為(x,﹣2x+6).
解法一:如圖,作OP∥AD交直線(xiàn)BC于點(diǎn)P,連接AP,作PM⊥x軸于點(diǎn)M.
∵OP∥AD,∴∠POM=∠GAD,tan∠POM=tan∠GAD.∴,即.
解得x=.經(jīng)檢驗(yàn)x=是原方程的解.此時(shí)點(diǎn)P的坐標(biāo)為(,).
但此時(shí)OM=,GA=,OM<GA.∵OP=,AD=,∠POM=∠GAD,∴OP<AD,即四邊形的對(duì)邊OP與AD平行但不相等,∴直線(xiàn)BC上不存在符合條件的點(diǎn)P.
解法二:如圖,取OA的中點(diǎn)E,作點(diǎn)D關(guān)于點(diǎn)E的對(duì)稱(chēng)點(diǎn)P,作PN⊥x軸于點(diǎn)N.則∠PEO=∠DEA,PE=DE.可得△PEN≌△DEG.由OE==4,可得E點(diǎn)的坐標(biāo)為(4,0).
NE=EG=,ON=OE﹣NE=,NP=DG.∴點(diǎn)P的坐標(biāo)為(,).
∵x=時(shí),-2x+6=1≠,∴點(diǎn)P不在直線(xiàn)BC上.∴直線(xiàn)BC上不存在符合條件的點(diǎn)P.
(3)|QA﹣QO|的取值范圍是0≤|QA﹣QO|≤4.
當(dāng)Q在OA的垂直平分線(xiàn)上與直線(xiàn)BC的交點(diǎn)時(shí),(如點(diǎn)K處),此時(shí)OK=AK,則|QA﹣QO|=0,當(dāng)Q在AH的延長(zhǎng)線(xiàn)與直線(xiàn)BC交點(diǎn)時(shí),此時(shí)|QA﹣QO|最大,直線(xiàn)AH的解析式為:,直線(xiàn)BC的解析式為:y=﹣2x+6,聯(lián)立可得:交點(diǎn)為(0,6),∴OQ=6,AQ=10,∴|QA﹣QO|=4,∴|QA﹣QO|的取值范圍是:0≤|QA﹣QO|≤4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠(chǎng)現(xiàn)在平均每天比原計(jì)劃多生產(chǎn)50臺(tái)機(jī)器,現(xiàn)在生產(chǎn)600臺(tái)機(jī)器所需要的時(shí)間與原計(jì)劃生產(chǎn)450臺(tái)機(jī)器所需要的時(shí)間相同.
(1)原計(jì)劃平均每天生產(chǎn)多少臺(tái)機(jī)器?
(2)若該工廠(chǎng)要在不超過(guò)5天的時(shí)間,生產(chǎn)1100臺(tái)機(jī)器,則平均每天至少還要再多生產(chǎn)多少臺(tái)機(jī)器?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)軸上離開(kāi)原點(diǎn)4個(gè)長(zhǎng)度單位的點(diǎn)表示的數(shù)是 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC是等邊三角形,點(diǎn)D、E分別在邊AB、BC上,CD、AE交于點(diǎn)F,∠AFD=60°.
(1)如圖1,求證:BD=CE;
(2)如圖2,F(xiàn)G為△AFC的角平分線(xiàn),點(diǎn)H在FG的延長(zhǎng)線(xiàn)上,HG=CD,連接HA、HC,求證:∠AHC=60°;
(3)在(2)的條件下,若AD=2BD,F(xiàn)H=9,求AF長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,直線(xiàn)與x軸、y軸的交點(diǎn)分別為A、B,將∠OBA對(duì)折,使點(diǎn)O的對(duì)應(yīng)點(diǎn)H落在直線(xiàn)AB上,折痕交x軸于點(diǎn)C.
(1)直接寫(xiě)出點(diǎn)C的坐標(biāo),并求過(guò)A、B、C三點(diǎn)的拋物線(xiàn)的解析式;
(2)若拋物線(xiàn)的頂點(diǎn)為D,在直線(xiàn)BC上是否存在點(diǎn)P,使得四邊形ODAP為平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;
(3)設(shè)拋物線(xiàn)的對(duì)稱(chēng)軸與直線(xiàn)BC的交點(diǎn)為T(mén),Q為線(xiàn)段BT上一點(diǎn),直接寫(xiě)出|QA﹣QO|的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AC的垂直平分線(xiàn)分別交AB、AC于點(diǎn)D、E.
(1)若∠A=40°,求∠DCB的度數(shù).
(2)若AE=4,△DCB的周長(zhǎng)為13,求△ABC的周長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com