【題目】已知RtABC中,∠ACB=90°,點D、E分別在BC、AC邊上,連結(jié)BE、AD交于點P,設AC=kBD,CD=kAE,k為常數(shù),試探究∠APE的度數(shù):

(1)如圖1,若k=1,則∠APE的度數(shù)為 ;

(2)如圖2,若k=,試問(1)中的結(jié)論是否成立?若成立,請說明理由;若不成立,求出∠APE的度數(shù).

(3)如圖3,若k=,且D、E分別在CB、CA的延長線上,(2)中的結(jié)論是否成立,請說明理由.

【答案】(1)45°;(2)(1)中結(jié)論不成立,理由見解析;(3)(2)中結(jié)論成立,理由見解析.

【解析】1)先判斷出四邊形ADBF是平行四邊形,得出BD=AF,BF=AD,進而判斷出△FAE≌△ACD,得出EF=AD=BF,再判斷出∠EFB=90°,即可得出結(jié)論;

(2)先判斷出四邊形ADBF是平行四邊形,得出BD=AF,BF=AD,進而判斷出△FAE∽△ACD,再判斷出∠EFB=90°,即可得出結(jié)論;

(3)先判斷出四邊形ADBF是平行四邊形,得出BD=AF,BF=AD,進而判斷出△ACD∽△HEA,再判斷出∠EFB=90°,即可得出結(jié)論;

1)如圖1,過點AAFCB,過點BBFAD相交于F,連接EF,

∴∠FBE=APE,∠FAC=C=90°,四邊形ADBF是平行四邊形,

BD=AFBF=AD

AC=BD,CD=AE,

AF=AC

∵∠FAC=C=90°,

FAE≌△ACD

EF=AD=BF,∠FEA=ADC

∵∠ADC+CAD=90°,

∴∠FEA+CAD=90°=EHD

ADBF,

∴∠EFB=90°

EF=BF

∴∠FBE=45°,

∴∠APE=45°

2)(1)中結(jié)論不成立,理由如下:

如圖2,過點AAFCB,過點BBFAD相交于F,連接EF,

∴∠FBE=APE,∠FAC=C=90°,四邊形ADBF是平行四邊形,

BD=AF,BF=AD

AC=BD,CD=AE,

BD=AF,

∵∠FAC=C=90°,

FAE∽△ACD

,∠FEA=ADC

∵∠ADC+CAD=90°,

∴∠FEA+CAD=90°=EMD

ADBF,

∴∠EFB=90°

RtEFB中,tanFBE=,

∴∠FBE=30°

∴∠APE=30°,

3)(2)中結(jié)論成立,如圖3,作EHCDDHBE,EH,DH相交于H,連接AH,

∴∠APE=ADH,∠HEC=C=90°,四邊形EBDH是平行四邊形,

BE=DHEH=BD

AC=BD,CD=AE

∵∠HEA=C=90°,

ACD∽△HEA

,∠ADC=HAE

∵∠CAD+ADC=90°,

∴∠HAE+CAD=90°,

∴∠HAD=90°

RtDAH中,tanADH=

∴∠ADH=30°,

∴∠APE=30°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】正在改造的人行道工地上,有兩種鋪設路面材料:一種是長為acm、寬為bcm的矩形板材(如圖1),另一種是邊長為ccm的正方形地磚(如圖2).

1)用多少塊如圖2所示的正方形地磚能拼出一個新的正方形?(只要寫出一個符合條件的答案即可),并寫出新正方形的面積;

2)現(xiàn)用如圖1所示的四塊矩形板材鋪成一個大矩形(如圖3)或大正方形(如圖4),中間分別空出一個小矩形和一個小正方形.

①試比較中間的小矩形和中間的小正方形的面積哪個大?大多少?

②如圖4,已知大正方形的邊長比中間小正方形的邊長多20cm,面積大3200cm2.如果選用如圖2所示的正方形地磚(邊長為20cm)鋪設圖4中間的小正方形部分,那么能否做到不用切割地磚就可直接密鋪(縫隙忽略不計)呢?若能,請求出密鋪所需地磚的塊數(shù);若不能,至少要切割幾塊如圖2的地磚?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABEADCABC分別是關于AB,AC邊所在直線的軸對稱圖形,若∠1:∠2:∠3=721,則∠α的度數(shù)為(  。

A.126°B.110°C.108°D.90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:ABC是等腰三角形,CA=CB,0°<ACB≤90°.點M在邊AC上,點N在邊BC上(點M、點N不與所在線段端點重合),BN=AM,連接AN,BM,射線AGBC,延長BM交射線AG于點D,點E在直線AN上,且AE=DE.

(1)如圖,當∠ACB=90°

①求證:BCM≌△ACN;

②求∠BDE的度數(shù);

(2)當∠ACB=α,其它多件不變時,∠BDE的度數(shù)是   (用含α的代數(shù)式表示)

(3)若ABC是等邊三角形,AB=3,點NBC邊上的三等分點,直線ED與直線BC交于點F,請直接寫出線段CF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校八年級甲、乙兩班各有學生50人,為了了解這兩個班學生身體素質(zhì)情況,進行了抽樣調(diào)查,過程如下,請補充完整.

(1)收集數(shù)據(jù)

從甲、乙兩個班各隨機抽取10名學生進行身體素質(zhì)測試,測試成績(百分制)如下:

甲班65 75 75 80 60 50 75 90 85 65

乙班90 55 80 70 55 70 95 80 65 70

(2)整理描述數(shù)據(jù)

按如下分數(shù)段整理、描述這兩組樣本數(shù)據(jù):

在表中:m= ,n=

(3)分析數(shù)據(jù)

①兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如表所示:

在表中:x= ,y=

②若規(guī)定測試成績在80分(含80分)以上的敘述身體素質(zhì)為優(yōu)秀,請估計乙班50名學生中身體素質(zhì)為優(yōu)秀的學生有 人.

③現(xiàn)從甲班指定的2名學生(11女),乙班指定的3名學生(21女)中分別抽取1名學生去參加上級部門組織的身體素質(zhì)測試,用樹狀圖和列表法求抽到的2名同學是11女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學現(xiàn)有在校學生2150人,為了解該校學生的課余活動情況,采取隨機抽樣的方法從閱讀、運動、娛樂、其它四個方面調(diào)查了若干名學生,并將調(diào)查的結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:

(1)本次調(diào)查共抽取了多少名學生?

(2)通過計算補全條形圖,并求出扇形統(tǒng)計圖中閱讀部分圓心角的度數(shù);

(3)請你估計該中學在課余時間參加閱讀和其它活動的學生一共有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】張老師元旦節(jié)期間到武商眾圓商場購買一臺某品牌筆記本電腦,恰逢商場正推出迎元旦促銷打折活動,具體優(yōu)惠情況如表:

購物總金額(原價)

折扣

不超過5000元的部分

九折

超過5000元且不超過10000元的部分

八折

超過10000元且不超過20000元的部分

七折

……

……

例如:若購買的商品原價為15000元,實際付款金額為:

5000×90%+100005000×80%+1500010000×70%12000元.

1)若這種品牌電腦的原價為8000/臺,請求出張老師實際付款金額;

2)已知張老師購買一臺該品牌電腦實際付費5700元.

①求該品牌電腦的原價是多少元/臺?

②若售出這臺電腦商場仍可獲利14%,求這種品牌電腦的進價為多少元/臺?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】勾股定理a2+b2=c2本身就是一個關于a,b,c的方程,滿足這個方程的正整數(shù)解(a,b,c)通常叫做勾股數(shù)組.畢達哥拉斯學派提出了一個構(gòu)造勾股數(shù)組的公式,根據(jù)該公式可以構(gòu)造出如下勾股數(shù)組:(3,4,5),(5,12,13),(7,24,25),….分析上面勾股數(shù)組可以發(fā)現(xiàn),4=1×(3+1),12=2×(5+1),24=3×(7+1),…分析上面規(guī)律,第5個勾股數(shù)組為_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,∠ACB=90,AC=BC,直線MN經(jīng)過點C,且ADMNDBEMNE.

(1)當直線MN繞點C旋轉(zhuǎn)到圖①位置時,求證:DE=AD+BE

(2)當直線MN繞點C旋轉(zhuǎn)到圖②位置時,試問:DE,AD,BE有怎樣的等量關系?請寫出這個等量關系,并加以證明.

(3)當直線MN繞點C旋轉(zhuǎn)到圖③位置時,DE,AD,BE之間的等量關系是 (直接寫出答案,不需證明.)

查看答案和解析>>

同步練習冊答案