(2008•莆田)如圖,拋物線c1:y=x2-2x-3與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C.點P為線段BC上一點,過點P作直線l⊥x軸于點F,交拋物線c1點E.
(1)求A、B、C三點的坐標;
(2)當點P在線段BC上運動時,求線段PE長的最大值;
(3)當PE為最大值時,把拋物線c1向右平移得到拋物線c2,拋物線c2與線段BE交于點M,若直線CM把△BCE的面積分為1:2兩部分,則拋物線c1應(yīng)向右平移幾個單位長度可得到拋物線c2?

【答案】分析:(1)已知了拋物線的解析式即可求出A、B、C三點的坐標.
(2)由于直線l與y軸平行,那么F、P、E三點的橫坐標就應(yīng)該相等,那么PE的長可看做是直線BC的函數(shù)值和拋物線的函數(shù)值的差.由此可得出關(guān)于PE的長和三點橫坐標的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)即可得出PE的最大值.
(3)先用平移的單位設(shè)出c2的解析式.由于直線CM把△BCE的面積分為1:2兩部分,根據(jù)等高三角形的面積比等于底邊比,可得出ME:BE=1:2或2:1.因此本題要分兩種情況進行討論,可過M作x軸的垂線,先根據(jù)相似三角形求出M點的橫坐標,然后根據(jù)直線BE的解析式,求出M點的坐標.由于拋物線c2經(jīng)過M點,據(jù)此可求出拋物線需要平移的單位.
解答:解:(1)已知拋物線過A、B、C三點,令y=0,
則有:x2-2x-3=0,
解得x=-1,x=3;
因此A點的坐標為(-1,0),B點的坐標為(3,0);
令x=0,y=-3,
因此C點的坐標為(0,-3).

(2)設(shè)直線BC的解析式為y=kx-3.
則有:3k-3=0,k=1,
因此直線BC的解析式為y=x-3.
設(shè)F點的坐標為(a,0).
PE=EF-PF=|a2-2a-3|-|a-3|=-a2+3a=-(a-2+(0≤a≤3)
因此PE長的最大值為

(3)由(2)可知:F點的坐標為(,0).
因此BF=OB-OF=
設(shè)直線BE的解析式為y=kx+b.則有:

解得:,
∴直線BE的解析式為y=x-
設(shè)平移后的拋物線c2的解析式為y=(x-1-k)2-4(k>0).
過M作MN⊥x軸于N,
①ME:MB=2:1;
∵MN∥EF

∴BN=,
∴N點的坐標為(,0),又直線BE過M點.
∴M點坐標為(,-).
由于拋物線c2過M點,
因此-=(-1-k)2-4,
解得k=(負值舍去).
②ME:MB=1:2;

∴BN=1
∴N點的坐標為(2,0),
∴M點的坐標為(2,-).
由于拋物線c2過M點,
則有-=(2-1-k)2-4,
解得k=1+(負值舍去).
因此拋物線c1應(yīng)向右平移或1+個單位長度后可得到拋物線c2
點評:本題主要考查了一次函數(shù)解析式的確定、二次函數(shù)圖象的平移、圖形面積的求法、函數(shù)圖象交點等知識點,考查了學(xué)生分類討論數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年湖北省黃岡市數(shù)學(xué)中考精品試卷之四(解析版) 題型:解答題

(2008•莆田)如圖:拋物線經(jīng)過A(-3,0)、B(0,4)、C(4,0)三點.
(1)求拋物線的解析式.
(2)已知AD=AB(D在線段AC上),有一動點P從點A沿線段AC以每秒1個單位長度的速度移動;同時另一個動點Q以某一速度從點B沿線段BC移動,經(jīng)過t秒的移動,線段PQ被BD垂直平分,求t的值;
(3)在(2)的情況下,拋物線的對稱軸上是否存在一點M,使MQ+MC有最小值?若存在,請求出點M的坐標;若不存在,請說明理由.(注:拋物線y=ax2+bx+c的對稱軸為x=-

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年湖北省黃石市陽新縣太子中學(xué)中考模擬數(shù)學(xué)試卷(3)(解析版) 題型:解答題

(2008•莆田)如圖:拋物線經(jīng)過A(-3,0)、B(0,4)、C(4,0)三點.
(1)求拋物線的解析式.
(2)已知AD=AB(D在線段AC上),有一動點P從點A沿線段AC以每秒1個單位長度的速度移動;同時另一個動點Q以某一速度從點B沿線段BC移動,經(jīng)過t秒的移動,線段PQ被BD垂直平分,求t的值;
(3)在(2)的情況下,拋物線的對稱軸上是否存在一點M,使MQ+MC有最小值?若存在,請求出點M的坐標;若不存在,請說明理由.(注:拋物線y=ax2+bx+c的對稱軸為x=-

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年廣東省湛江市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2008•莆田)如圖:拋物線經(jīng)過A(-3,0)、B(0,4)、C(4,0)三點.
(1)求拋物線的解析式.
(2)已知AD=AB(D在線段AC上),有一動點P從點A沿線段AC以每秒1個單位長度的速度移動;同時另一個動點Q以某一速度從點B沿線段BC移動,經(jīng)過t秒的移動,線段PQ被BD垂直平分,求t的值;
(3)在(2)的情況下,拋物線的對稱軸上是否存在一點M,使MQ+MC有最小值?若存在,請求出點M的坐標;若不存在,請說明理由.(注:拋物線y=ax2+bx+c的對稱軸為x=-

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年福建省莆田市中考數(shù)學(xué)試卷(網(wǎng)絡(luò)卷)(解析版) 題型:解答題

(2008•莆田)如圖:拋物線經(jīng)過A(-3,0)、B(0,4)、C(4,0)三點.
(1)求拋物線的解析式.
(2)已知AD=AB(D在線段AC上),有一動點P從點A沿線段AC以每秒1個單位長度的速度移動;同時另一個動點Q以某一速度從點B沿線段BC移動,經(jīng)過t秒的移動,線段PQ被BD垂直平分,求t的值;
(3)在(2)的情況下,拋物線的對稱軸上是否存在一點M,使MQ+MC有最小值?若存在,請求出點M的坐標;若不存在,請說明理由.(注:拋物線y=ax2+bx+c的對稱軸為x=-

查看答案和解析>>

同步練習(xí)冊答案