如圖,正五邊形ABCDE中,對角線AC、ADBE分別相交于點N、M.下列結論錯誤的是

[  ]

A.四邊形NCDE是菱形

B.四邊形MNCD是等腰梯形

C.AEM與△CBN相似

D.AEN與△EDM全等

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

27、問題背景:某課外學習小組在一次學習研討中,得到了如下兩個命題:
Ⅰ.如圖①,在正三角形△ABC中,M、N分別是AC、AB上的點,BM與CN相交于點O,若∠BON=60°,則BM=CN.
Ⅱ.如圖②,在正方形ABCD中,M、N分別是CD、AD上的點,BM與CN相交于點O,若∠BON=90°,則BM=CN.
任務要求:
(1)請你從Ⅰ、Ⅱ兩個命題中選擇一個進行證明.
(2)如圖,在正五邊形ABCDE中,M、N分別是CD、DE上的點,BM與CN相交于點O,若∠BON=108°,請問結論BM=CN是否還成立?若成立,請給予證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

O是邊長為a的正多邊形的中心,將一塊半徑足夠長,圓心角為α的扇形紙板的圓心放在O點處,并將紙板繞O點旋轉.
(1)若正多邊形為正三角形,扇形的圓心角α=120°,請你通過觀察或測量,填空:
①如圖1,正三角形ABC的邊被扇形紙板覆蓋部分的總長度為
 
;
②如圖2,正三角形ABC的邊被扇形紙板覆蓋部分的總長度為
 
;
(2)若正多邊形為正方形,扇形的圓心角α=90°時,①如圖3,正方形ABCD的邊被扇形紙板覆蓋部分的總長度為
 
;
②如圖4,正方形ABCD的邊被扇形紙板覆蓋部分的總長度為多少?并給予證明;
(3)若正多邊形為正五邊形,如圖5,當扇形紙板的圓心角α為
 
時,正五邊形的邊被扇形紙板覆蓋部分的總長度仍為定值a.
(4)一般地,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正n邊形的中心O點處,并將紙板繞O點旋轉.當扇形紙板的圓心角為
 
時,正n邊形的邊被扇形紙板覆蓋部分的總長度為定值a.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2010•邢臺二模)規(guī)律:
如圖1,直線m∥n,A、B為直線n上的點,C、P為直線m上的點.如果A、B、C為三個定點,點P在m上移動,那么無論點P移動到何位置,△ABP與△ABC的面積總相等,其理由是
同底等高的兩個三角形面積相等
同底等高的兩個三角形面積相等

應用:
(1)如圖2,△ABC和△DCE都是等邊三角形,若△ABC的邊長為1,則△BAE的面積是
3
4
3
4

(2)如圖3,四邊形ABCD和四邊形BEFG都是正方形,若正方形ABCD的邊長為4,求△ACF的面積.
(3)如圖4,五邊形ABCDE和五邊形BFGHP都是正五邊形,若正五邊形ABCDE的邊長為a,求△ACH的面積(結果不求近似值).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,若五邊形ABCDE是⊙O的內(nèi)接正五邊形,則∠BOC=
72°
72°
,∠ABE=
36°
36°
,∠ADC=
72°
72°
,∠ABC=
108°
108°

查看答案和解析>>

科目:初中數(shù)學 來源:2009年青海省初中畢業(yè)升學考試數(shù)學試題及答案 題型:059

請閱讀,完成證明和填空.

九年級數(shù)學興趣小組在學校的“數(shù)學長廊”中興奮地展示了他們小組探究發(fā)現(xiàn)的結果,內(nèi)容如下:

(1)如圖,正三角形ABC中,在AB、AC邊上分別取點M、N,使BM=AN,連接BN、CM,發(fā)現(xiàn)BN=CM,且∠NOC=60°.

請證明:∠NOC=60°.

(2)如圖,正方形ABCD中,在AB、BC邊上分別取點M、N,使AM=BN,連接AN、DM,那么AN=________,且∠DON=________度.

(3)如圖,正五邊形ABCDE中,在AB、BC邊上分別取點M、N,使AM=BN,連接AN、EM,那么AN=________,且∠EON=________度.

(4)在正n邊形中,對相鄰的三邊實施同樣的操作過程,也會有類似的結論.

請大膽猜測,用一句話概括你的發(fā)現(xiàn):________________

查看答案和解析>>

同步練習冊答案