若方程=-1的解為最小的正整數(shù),則a=________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:北京市順義區(qū)2010屆初三第一次統(tǒng)一練習(xí)數(shù)學(xué)試卷 題型:044

已知:拋物線y=(k-1)x2+2kxk-2與x軸有兩個(gè)不同的交點(diǎn).

(1)求k的取值范圍;

(2)當(dāng)k為整數(shù),且關(guān)于x的方程3xkx-1的解是負(fù)數(shù)時(shí),求拋物線的解析式;

(3)在(2)的條件下,若在拋物線和x軸所圍成的封閉圖形內(nèi)畫出一個(gè)最大的正方形,使得正方形的一邊在x軸上,其對(duì)邊的兩個(gè)端點(diǎn)在拋物線上,試求出這個(gè)最大正方形的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

近年來,大學(xué)生就業(yè)日益困難.為了扶持大學(xué)生自主創(chuàng)業(yè),某市政府提供了80萬元無息貸款,用于某大學(xué)生開辦公司生產(chǎn)并銷售自主研發(fā)的一種電子產(chǎn)品,并約定用該公司經(jīng)營的利潤(rùn)逐步償還無息貸款.已知該產(chǎn)品的生產(chǎn)成本為每件40元,員工每人每月的工資為2500元,公司每月需支付其他費(fèi)用15萬元.該產(chǎn)品每月銷售量y(萬件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系如圖所示.

(1)分別求出40<x≤60;60<x<80時(shí),月銷售量y(萬件)與銷售

單價(jià)x(元)之間的函數(shù)關(guān)系;

(2)當(dāng)銷售單價(jià)定為50元時(shí),為保證公司月利潤(rùn)達(dá)到5萬元

(利潤(rùn)=銷售額—生產(chǎn)成本—員工工資—其它費(fèi)用),該公司

可安排員工多少人?

(3)若該公司有80名員工,則該公司最早可在幾月后還清貸款?

 

【解析】(1)利用圖象上點(diǎn)的坐標(biāo)利用待定系數(shù)法代入y=kx+b,求出一次函數(shù)解析式即可;

(1) 根據(jù)利潤(rùn)=銷售額—生產(chǎn)成本—員工工資—其它費(fèi)用列方程求出解

(3)分兩種情況進(jìn)行討論:當(dāng)時(shí),當(dāng)時(shí)得出結(jié)論

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省泰州市靖江外國語學(xué)校中考二模數(shù)學(xué)卷(解析版) 題型:解答題

近年來,大學(xué)生就業(yè)日益困難.為了扶持大學(xué)生自主創(chuàng)業(yè),某市政府提供了80萬元無息貸款,用于某大學(xué)生開辦公司生產(chǎn)并銷售自主研發(fā)的一種電子產(chǎn)品,并約定用該公司經(jīng)營的利潤(rùn)逐步償還無息貸款.已知該產(chǎn)品的生產(chǎn)成本為每件40元,員工每人每月的工資為2500元,公司每月需支付其他費(fèi)用15萬元.該產(chǎn)品每月銷售量y(萬件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系如圖所示.

(1)分別求出40<x≤60;60<x<80時(shí),月銷售量y(萬件)與銷售

單價(jià)x(元)之間的函數(shù)關(guān)系;

(2)當(dāng)銷售單價(jià)定為50元時(shí),為保證公司月利潤(rùn)達(dá)到5萬元

(利潤(rùn)=銷售額—生產(chǎn)成本—員工工資—其它費(fèi)用),該公司

可安排員工多少人?

(3)若該公司有80名員工,則該公司最早可在幾月后還清貸款?

 

【解析】(1)利用圖象上點(diǎn)的坐標(biāo)利用待定系數(shù)法代入y=kx+b,求出一次函數(shù)解析式即可;

(1) 根據(jù)利潤(rùn)=銷售額—生產(chǎn)成本—員工工資—其它費(fèi)用列方程求出解

(3)分兩種情況進(jìn)行討論:當(dāng)時(shí),當(dāng)時(shí)得出結(jié)論

 

查看答案和解析>>

同步練習(xí)冊(cè)答案