【題目】已知拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)(1,0),(0,).

(1)求該拋物線的函數(shù)表達(dá)式;

(2)將拋物線y=﹣x2+bx+c平移,使其頂點(diǎn)恰好落在原點(diǎn),請(qǐng)寫出一種平移的方法及平移后的函數(shù)表達(dá)式.

【答案】(1)拋物線解析式為y=﹣x2﹣x+;(2)拋物線向右平移一個(gè)單位,向下平移2個(gè)單位,解析式變?yōu)?/span>y=﹣x2

【解析】

(1)(1,0)(0,號(hào))代入拋物線解析式得到-個(gè)關(guān)于bc的二元-次方程組,解之即可得拋物線解析式.

(2)(1)中求得的解析式配方得其頂點(diǎn)坐標(biāo)為(-1,2),故使其頂點(diǎn)恰好落在原點(diǎn)的一種平移方法:先向右平移1個(gè)單位長(zhǎng)度,再向下平移2個(gè)單位長(zhǎng)度;從而可得平移后的函數(shù)表達(dá)式.

(1)把(1,0),(0,)代入拋物線解析式得:,

解得:,

則拋物線解析式為y=﹣x2﹣x+

(2)拋物線解析式為y=﹣x2﹣x+=﹣(x+1)2+2,

將拋物線向右平移一個(gè)單位,向下平移2個(gè)單位,解析式變?yōu)?/span>y=﹣x2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,函數(shù)y=(x>0,k為常數(shù))的圖象經(jīng)過A(4,1),點(diǎn)B(a,b)(0<a<4)是雙曲線上的一動(dòng)點(diǎn),過AACy軸于C,點(diǎn)D是坐標(biāo)系中的另一點(diǎn).若以A.B.C.D為頂點(diǎn)的平行四邊形的面積為12,那么對(duì)角線長(zhǎng)度的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.

(1)求證:△ABC≌△ADE;

(2)求∠FAE的度數(shù);

(3)求證:CD=2BF+DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

數(shù)學(xué)活動(dòng)課上,老師出了一道作圖問題:如圖,已知直線l和直線l外一點(diǎn)P.用直尺和圓規(guī)作直線PQ,使PQ⊥l于點(diǎn)Q.”

小艾的作法如下:

(1)在直線l上任取點(diǎn)A,以A為圓心,AP長(zhǎng)為半徑畫弧.

(2)在直線l上任取點(diǎn)B,以B為圓心,BP長(zhǎng)為半徑畫。

(3)兩弧分別交于點(diǎn)P和點(diǎn)M

(4)連接PM,與直線l交于點(diǎn)Q,直線PQ即為所求.

老師表?yè)P(yáng)了小艾的作法是對(duì)的.

請(qǐng)回答:小艾這樣作圖的依據(jù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知菱形ABCD,AB=AC,E、F分別是BC,AD的中點(diǎn),連接AE、CF.

(1)求證:四邊形AECF是矩形;

(2)若AB=2,求菱形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD的邊長(zhǎng)為4,B的半徑為2,點(diǎn)P是⊙B上的一個(gè)動(dòng)點(diǎn),則PD﹣PC的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩名隊(duì)員參加射擊訓(xùn)練,每人射擊10次,成績(jī)分別如下:

根據(jù)以上信息,整理分析數(shù)據(jù)如下:

平均成績(jī)/環(huán)

中位數(shù)/環(huán)

眾數(shù)/環(huán)

方差

a

7

7

1.2

7

b

8

c

1a_____;b_____;c_____;

2)填空:(填).

①?gòu)钠骄鶖?shù)和中位數(shù)的角度來(lái)比較,成績(jī)較好的是_____;

②從平均數(shù)和眾數(shù)的角度來(lái)比較,成績(jī)較好的是_____;

③成績(jī)相對(duì)較穩(wěn)定的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形ABCD中,ADBCECD中點(diǎn),連接AE并延長(zhǎng)AEBC的延長(zhǎng)線于點(diǎn)F

1)求證:CFAD.

2)若AD3,AB8,當(dāng)BC為多少時(shí),點(diǎn)B在線段AF的垂直平分線上,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某縣實(shí)施村村通工程中,決定在A、B兩村之間修筑一條公路,甲、乙兩個(gè)工程隊(duì)分別從AB兩村同時(shí)開始修筑,施工期間,乙隊(duì)因另有任務(wù)提前離開,余下的任務(wù)由甲隊(duì)單獨(dú)完成,直到道路修通,下圖是甲、乙兩個(gè)工程隊(duì)修道路長(zhǎng)度y(米)與修筑時(shí)間x(天)之間的函數(shù)圖象,請(qǐng)根據(jù)圖象所提供的信息,解答下列問題:

1)寫出乙工程隊(duì)修道路的長(zhǎng)度y與修筑時(shí)間x之間的函數(shù)關(guān)系式:_____;

2)甲工程隊(duì)前8天所修公路為_____米,該公路的總長(zhǎng)度為_____米;

3)若乙工程隊(duì)不提前離開,則兩隊(duì)只需_____天就能完成任務(wù);

4)甲、乙兩工程隊(duì)第_____天時(shí)所修道路的長(zhǎng)度相差80米.

查看答案和解析>>

同步練習(xí)冊(cè)答案