在直角坐標系中,正方形A1B1C1O1、A2B2C2C1、…、AnBnCnCn1按如圖所示的方式放置,其中點A1、A2、A3、…、An均在一次函數(shù)y=kx+b的圖象上,點C1、C2、C3、…、Cn均在x軸上.若點B1的坐標為(1,1),點B2的坐標為(3,2),則點An的坐標為           

(2n1﹣1,2n1

解析試題分析:∵B1的坐標為(1,1),點B2的坐標為(3,2),
∴正方形A1B1C1O1邊長為1,正方形A2B2C2C1邊長為2,
∴A1的坐標是(0,1),A2的坐標是:(1,2),
代入y=kx+b得,
解得:
則直線的解析式是:y=x+1.
∵A1B1=1,點B2的坐標為(3,2),
∴A1的縱坐標是1,A2的縱坐標是2.
在直線y=x+1中,令x=3,則縱坐標是:3+1=4=22;
則A4的橫坐標是:1+2+4=7,則A4的縱坐標是:7+1=8=23;
據(jù)此可以得到An的縱坐標是:2n1,橫坐標是:2n1﹣1.
故點An的坐標為(2n1﹣1,2n1).
故答案是:(2n1﹣1,2n1).
考點:一次函數(shù)綜合題;相似三角形的判定與性質(zhì).
點評:本題主要考查了待定系數(shù)法求函數(shù)解析式,正確得到點的坐標的規(guī)律是解題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖所示,在直角坐標系中,正方形ABOD的邊長為a,O為原點,點B在x軸的負半軸上,點D在y軸的正半軸上,直線OM的解析式為y=2x,直線CN過x軸上的一點C(-
3
5
a
,0)且與OM平行,交AD于點E,現(xiàn)正方形以每秒為
a
10
的速度勻速沿x軸正方向右平行移動,設(shè)運動時間為t秒,正方形被夾在直線CE和OF間的部分為S,
(1)求點A、B、D的坐標;
(2)求梯形ECOD的面積;
(3)0≤t<4時,寫出S與t的函數(shù)關(guān)系式.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在直角坐標系中,正方形ABOD的邊長為5,O為原點,點B在x軸的負半軸上,點D在y軸的正半軸上,直線OE的解析式為y=2x,直線CF過x軸上一點C(-3,0)且與OE平行.現(xiàn)正方形以每秒
12
的速度勻速沿x軸的正方向平行移動,設(shè)精英家教網(wǎng)運動時間為t秒,正方形被夾在直線OE與CF間的部分的面積為S.
(1)當0≤t<4時,寫出S與t的函數(shù)關(guān)系;
(2)當4≤t≤5時,寫出S與t的函數(shù)關(guān)系,在這個范圍內(nèi)S有無最大值?若有,請求出這個最大值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在直角坐標系中,O是坐標原點,正方形OABC的頂點A恰好落在雙曲線y=
3
x
(x>0)上,且OA與x軸正方向的夾角為30°.則正方形OABC的面積是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2010•本溪一模)在直角坐標系中,放置一個如圖的直角三角形紙片AOB,已知OA=2,∠AOB=30°,D、E兩點同時從原點O出發(fā),D點以每秒
3
個單位長度的速度沿y軸正方向運動,E點以每秒1個單位長度的速度沿x軸正方向運動,設(shè)D、E兩點的運動時間為t秒(t≠0).
(1)在點D、E的運動過程中,直線DE與線段OA垂直嗎?請說明理由;
(2)當時間t在什么范圍時,直線DE與線段OA有公共點?
(3)若直線DE與直線OA相交于點F,將△OEF沿DE向上折疊,設(shè)折疊后△OEF與△AOB重疊部分面積為S,請直接寫出S與t的函數(shù)關(guān)系式,并寫出t為何值時,折疊面積最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•恩施州)如圖所示,在直角坐標系中放置一個邊長為1的正方形ABCD,將正方形ABCD沿x軸的正方向無滑動的在x軸上滾動,當點A離開原點后第一次落在x軸上時,點A運動的路徑線與x軸圍成的面積為( 。

查看答案和解析>>

同步練習冊答案