甲、乙二人從A、B兩地同時出發(fā)相向而行,相遇后,甲立即返回,先于乙回到A地,兩人相距的路程y(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系如圖所示,則乙從B地到A地需時間________小時.


分析:有函數(shù)的圖象可知,A,B兩地相距20千米,兩人相遇時的時間為2個小時,當(dāng)甲回到A時,此時也是兩個小時,而乙還差4公里,由此可設(shè)他們的上的分別為x千米每小時和y千米每小時,列方程組求解即可.
解答:設(shè)甲的速度是每小時x千米,乙的速度是每小時y千米,
∵甲乙兩人2小時相遇,,
=2 ①,
∵當(dāng)甲回到A時,此時也是2個小時,而乙還差4公里,
∴2x-2y=4②,
聯(lián)立①②組成方程組得:
解得:
∴甲的速度11千米/小時,乙的速度是9千米/小時,
∴乙從B地到A地需時間為小時,
故答案為:
點評:本題考查了借助于函數(shù)圖象解決實際問題,解題的關(guān)鍵是從圖象中知道A,B兩地的距離,設(shè)未知數(shù)建立方程組.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

18、甲、乙二人從相距26千米的兩地同時相向而行,甲每小時走3.5千米,4小時后兩人相遇,求乙行走的速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

9、甲、乙二人從山腳開始爬山,到達(dá)山頂后立即下山返回,已知甲上山的速度比下山的速度慢,乙上山的速度比甲上山的速度慢,但乙的下山的速度比甲下山的速度快,即使如此,乙還是在甲之后回到山腳,如果甲、乙兩人同時從山腳出發(fā),下列圖象中,①、②分別描述甲、乙二人離山腳的距離S(米)和從山腳出發(fā)的時間t(分)之間的函數(shù)關(guān)系,其中大致正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知甲、乙二人從相距18千米的兩地同時出發(fā),相向而行,1
4
5
小時相遇;如果甲比乙先走
2
3
小時,那么在乙出發(fā)后1
1
2
小時兩人相遇.設(shè)甲、乙二人的速度分別為x千米/小時、y千米/小時,依題意得方程組(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

判斷說理:元旦聯(lián)歡會上,八年級(1)班的同學(xué)們在禮堂四周擺了一圈長條桌子,其中北邊條桌上擺滿了蘋果,東邊條桌上擺滿了香蕉,禮堂中間B處放了一把椅子,游戲規(guī)則是這樣的:甲、乙二人從A處(如圖)同時出發(fā),先去拿蘋果再去拿香蕉,然后回到B處,誰先坐到椅子上誰贏.張曉和李嵐比賽,比賽一開始,只見張曉直奔東北兩張條桌的交點處,左手抓蘋果,右手拿香蕉,回頭直奔B處,可是還未跑到B處,只見李嵐已經(jīng)手捧蘋果和香蕉穩(wěn)穩(wěn)地坐在B處的椅子上了.如果李嵐不比張曉跑得快,張曉若想獲勝有沒有其他的捷徑?若有,請說明你的捷徑,若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

為迎接奧運會,某校八年級學(xué)生開展了“迎奧運短跑比賽”。甲、乙兩人同時從A地出發(fā),沿同一條道路去B地,途中都使用兩種不同的速度V1與V2(V1< V2),甲前一半的路程使用速度V1,另一半的路程使用速度V2;乙前一半的時間用速度V1,另一半的時間用速度V2

(1)甲、乙二人從A地到達(dá)B地的平均速度分別為V、V,則V              ,V             (用含V1,V2的式子表示)

(2)試通過計算說明甲、乙誰先到達(dá)B地?為什么?

查看答案和解析>>

同步練習(xí)冊答案