【題目】某中學(xué)的高中部在A校區(qū),初中部在B校區(qū),學(xué)校學(xué)生會(huì)計(jì)劃在3月12日植樹節(jié)當(dāng)天安排部分學(xué)生到郊區(qū)公園參加植樹活動(dòng).已知A校區(qū)的每位高中學(xué)生往返車費(fèi)是6元,B校區(qū)的每位初中學(xué)生往返的車費(fèi)是10元,要求初、高中均有學(xué)生參加,且參加活動(dòng)的初中學(xué)生比參加活動(dòng)的高中學(xué)生多4人,本次活動(dòng)的往返車費(fèi)總和不超過(guò)210元,求初、高中最多各有多少學(xué)生參加.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB與CD相交于點(diǎn)O,且∠OAD=∠OCB,延長(zhǎng)AD、CB交于點(diǎn)P,那么圖中的相似三角形的對(duì)數(shù)為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△CDE的頂點(diǎn)C點(diǎn)坐標(biāo)為C(1,﹣2),點(diǎn)D的橫坐標(biāo)為 , 將△CDE繞點(diǎn)C旋轉(zhuǎn)到△CBO,點(diǎn)D的對(duì)應(yīng)點(diǎn)B在x軸的另一個(gè)交點(diǎn)為點(diǎn)A.
(1)圖中,∠OCE等于多少;
(2)求拋物線的解析式;
(3)拋物線上是否存在點(diǎn)P,使S△PAE=S△CDE?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、BC上的點(diǎn),且DE∥AC,若S△BDE:S△CDE=1:4,則S△BDE:S△ACD=( 。
A.1:16
B.1:18
C.1:20
D.1:24
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC和△BAD中,AC與BD相交于點(diǎn)E,已知AD=BC,另外只能從下面給出的三個(gè)條件:①∠DAB=∠CBA;②∠D=∠C;③∠DBA=∠CAB中選擇其中的一個(gè)用來(lái)證明△ABC和△BAD全等,這個(gè)條件是 (填序號(hào)),并證明△ABC≌△BAD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某綠色無(wú)公害蔬菜基地有甲、乙兩種植戶,他們們種植了A、B兩類蔬菜,兩種植戶種植的兩類蔬菜的種植面積與總收入如下表:
種植戶 | 種植A類蔬菜面積(單位:畝) | 種植B類蔬菜面積(單位:畝) | 總收入(單位:元) |
甲 | 1 | 3 | 13500 |
乙 | 2 | 2 | 13000 |
說(shuō)明:不同種植戶種植的同類蔬菜每畝平均收入相等
(1)求A、B兩類蔬菜每畝平均收入各是多少元?
(2)今年甲、乙兩種植戶聯(lián)合種植,計(jì)劃合租50畝地用來(lái)種植A、B兩類蔬菜,為了使總收入不低于16400元,問(wèn)聯(lián)合種植最多可以種植A類蔬菜多少畝?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)軸上有A,B,C,D四個(gè)點(diǎn),且2AB=BC=3CD,若A,D兩點(diǎn)表示的數(shù)分別為-5,6,點(diǎn)E為BD的中點(diǎn),則該數(shù)軸上點(diǎn)E表示的數(shù)是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一寬為2cm的刻度尺在圓上移動(dòng),當(dāng)刻度尺的一邊與圓相切時(shí),另一邊與圓兩個(gè)交點(diǎn)處的讀數(shù)恰好為“1”和“4”(單位:cm),則該圓的半徑為( )
A.5cm
B.cm
C.cm
D.cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O是直線AB上的一點(diǎn),∠COD是直角,OE平分∠BOC.
(1)若∠AOC=30°,求∠DOE的度數(shù);
(2)若∠AOC=α,直接寫出∠DOE的度數(shù)(用含α的代數(shù)式表示);
(3)在(1)的條件下,∠BOC的內(nèi)部有一射線OG,射線OG將∠BOC分為1:4兩部分,求∠DOG的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com