(2012•江西二模)如圖,正方形ABCD中,點E、F分別在邊BC、CD上,且AE=EF=FA.你能得出的結(jié)論是:(至少寫兩個)
△ABE≌△ADF;
△ABE≌△ADF;

CE=CF.
CE=CF.

(寫對一個給1分,寫對兩個給3分)
分析:由正方形的性質(zhì)可以得出∠B=∠D=90°,AB=AD=BC=CD,再根據(jù)條件AE=AF就可以得出△ABE≌△ADF,從而可以得出BE=DF,由等式的性質(zhì)就可以得出CE=CF.
解答:解:∵四邊形ABCD是正方形,
∴∠B=∠D=90°,AB=AD=BC=CD,
∵AE=FA,
∴△ABE≌△ADF,
∴BE=DF,
∴BC-BE=CD-DF,即CE=CF.
故答案為:△ABE≌△ADF,CE=CF.
點評:本題考查了正方形的性質(zhì)的運用,全等三角形的判定與性質(zhì)的運用,本題是一道結(jié)論開方性試題,解答中證明三角形全等是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•江西二模)如圖,BD、CF把矩形ABCD分成四塊a、b、c、d,其中Sa=4,Sb=6,則Sc=?,Sd=?( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•江西二模)如圖是一組數(shù)據(jù)的折線統(tǒng)計圖,這組數(shù)據(jù)的極差是
31
31

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•江西二模)在∠MON的兩邊上分別找兩點P、Q,使得AP+PQ+QB最。ūA舢媹D痕跡,不要求寫作法)

查看答案和解析>>

科目:初中數(shù)學 來源:2009年重慶市梁平縣云龍中學中考數(shù)學模擬試卷1(解析版) 題型:解答題

(2012•江西二模)某單位團支部組織青年團員參加登山比賽.比賽獎次所設等級分為:一等獎1人,二等獎4人,三等獎5人.團支部要求一等獎獎品單價比二等獎獎品單價高15元,二等獎獎品單價比三等獎獎品單價高15元.設一等獎獎品的單價為x(元),團支部購買獎品總金額為y(元).
(1)求y與x的函數(shù)關(guān)系式(即函數(shù)表達式);
(2)因為團支部活動經(jīng)費有限,購買獎品的總金額應限制在:500≤y≤600.在這種情況下,請根據(jù)備選獎品表提出購買一、二、三等獎獎品有哪幾種方案然后本著盡可能節(jié)約資金的原則,選出最佳方案,并求出這時全部獎品所需總金額是多少?
備選獎品及單價如下表(單價:元)
備選獎品足球籃球排球羽毛球拍乒乓球拍旱冰鞋運動衫象棋圍棋
單價(元)847974696459544944

查看答案和解析>>

同步練習冊答案