如圖,直線  交x軸、y軸于A、B兩點(diǎn),P是反比例函數(shù)圖象上位于直線下方的一點(diǎn),過點(diǎn)Px軸的垂線,垂足為點(diǎn)M,交AB于點(diǎn)E,過點(diǎn)Py軸的垂線,垂足為點(diǎn)N,交AB于點(diǎn)F,則AF·BE=(    )

 A.2             B.4           C. 6         D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:拋物線數(shù)學(xué)公式的頂點(diǎn)為A(1,0)
(1)求F1的函數(shù)解析式;
(2)如圖,直線數(shù)學(xué)公式交x軸于點(diǎn)C,交y軸于點(diǎn)D,在拋物線F1上有一點(diǎn)B,且點(diǎn)B與點(diǎn)A關(guān)于直線數(shù)學(xué)公式對(duì)稱,若拋物線F2的頂點(diǎn)為點(diǎn)B,且經(jīng)過點(diǎn)A,試求拋物線F2的函數(shù)解析式;
(3)將(2)中求得的拋物線F2向左平移n個(gè)單位得拋物線F3,拋物線F3的頂點(diǎn)為點(diǎn)P,是否存在n使得tan∠BAP=數(shù)學(xué)公式?若存在試求n的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線x軸于點(diǎn)A,交y軸于點(diǎn)B,拋物線的頂點(diǎn)為A,且經(jīng)過點(diǎn)B

⑴求該拋物線的解析式;

⑵若點(diǎn)C(m,)在拋物線上,求m的值.

21世紀(jì)教育網(wǎng) -- 中國(guó)最大型、最專業(yè)的中小學(xué)教育資源門戶網(wǎng)站
 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省恩施州利川市東城初中九年級(jí)(上)入學(xué)選拔考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,直線交x軸于點(diǎn)A,交直線于點(diǎn)B(2,m).矩形CDEF的邊DC在x軸上,D在C的左側(cè),EF在x軸的上方,DC=2,DE=4.當(dāng)點(diǎn)C的坐標(biāo)為(-2,0)時(shí),矩形CDEF開始以每秒2個(gè)單位的速度沿x軸向右運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.
(1)求b、m的值;
(2)矩形CDEF運(yùn)動(dòng)t秒時(shí),直接寫出C、D兩點(diǎn)的坐標(biāo);(用含t的代數(shù)式表示)
(3)當(dāng)點(diǎn)B在矩形CDEF的一邊上時(shí),求t的值;
(4)設(shè)CF、DE分別交折線OBA于M、N兩點(diǎn),當(dāng)四邊形MCDN為直角梯形時(shí),求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省寧波市奉化市奉港初中中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

已知:如圖,直線 交x軸于O1,交y軸于O2,⊙O2與x軸相切于O點(diǎn),交直線O1O2于P點(diǎn),以O(shè)1為圓心O1P為半徑的圓交x軸于A、B兩點(diǎn),PB交⊙O2于點(diǎn)F,⊙O1的弦BE=BO,EF的延長(zhǎng)線交AB于D,連接PA、PO.
(1)求證:∠APO=∠BPO;
(2)求證:EF是⊙O2的切線;
(3)EO1的延長(zhǎng)線交⊙O1于C點(diǎn),若G為BC上一動(dòng)點(diǎn),以O(shè)1G為直徑作⊙O3交O1C于點(diǎn)M,交O1B于N.下列結(jié)論:①O1M•O1N為定值;②線段MN的長(zhǎng)度不變.只有一個(gè)是正確的,請(qǐng)你判斷出正確的結(jié)論,并證明正確的結(jié)論,以及求出它的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國(guó)中考數(shù)學(xué)試題匯編《圓》(12)(解析版) 題型:解答題

(2005•武漢)已知:如圖,直線交x軸于O1,交y軸于O2,⊙O2與x軸相切于O點(diǎn),交直線O1O2于P點(diǎn),以O(shè)1為圓心,O1P為半徑的圓交x軸于A、B兩點(diǎn),PB交⊙O2于點(diǎn)F,⊙O1的弦BE=BO,EF的延長(zhǎng)線交AB于D,連接PA、PO.
(1)求證:∠APO=∠BPO;
(2)求證:EF是⊙O2的切線;
(3)EO1的延長(zhǎng)線交⊙O1于C點(diǎn),若G為BC上一動(dòng)點(diǎn),以O(shè)1G為直徑作⊙O3交O1C于點(diǎn)M,交O1B于N.下列結(jié)論:①O1M•O1N為定值;②線段MN的長(zhǎng)度不變.只有一個(gè)是正確的,請(qǐng)你判斷出正確的結(jié)論,并證明正確的結(jié)論,以及求出它的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案