精英家教網(wǎng) > 初中數(shù)學(xué) > 題目詳情
如圖1,平面之間坐標系中,等腰直角三角形的直角邊BC在x軸正半軸上滑動,點C的坐標為(t,0),直角邊AC=4,經(jīng)過O,C兩點做拋物線y1=ax(x﹣t)(a為常數(shù),a>0),該拋物線與斜邊AB交于點E,直線OA:y2=kx(k為常數(shù),k>0)

(1)填空:用含t的代數(shù)式表示點A的坐標及k的值:A (t,4) ,k=�。╧>0) ;
(2)隨著三角板的滑動,當(dāng)a=時:
①請你驗證:拋物線y1=ax(x﹣t)的頂點在函數(shù)y=
的圖象上;
②當(dāng)三角板滑至點E為AB的中點時,求t的值;
(3)直線OA與拋物線的另一個交點為點D,當(dāng)t≤x≤t+4,|y2﹣y1|的值隨x的增大而減小,當(dāng)x≥t+4時,|y2﹣y1|的值隨x的增大而增大,求a與t的關(guān)系式及t的取值范圍.
考點:
二次函數(shù)綜合題.
分析:
(1)根據(jù)題意易得點A的橫坐標與點C的相同,點A的縱坐標即是線段AC的長度;把點A的坐標代入直線OA的解析式來求k的值;
(2)①求得拋物線y1的頂點坐標,然后把該坐標代入函數(shù)y=
,若該點滿足函數(shù)解析式y(tǒng)=
,即表示該頂點在函數(shù)y=
圖象上;反之,該頂點不在函數(shù)y=
圖象上;
②如圖1,過點E作EK⊥x軸于點K.則EK是△ACB的中位線,所以根據(jù)三角形中位線定理易求點E的坐標,把點E的坐標代入拋物線y1=x(x﹣t)即可求得t=2;
(3)如圖2,根據(jù)拋物線與直線相交可以求得點D橫坐標是
+4.則t+4=
+4,由此可以求得a與t的關(guān)系式.
解答:
解:(1)∵點C的坐標為(t,0),直角邊AC=4,
∴點A的坐標是(t,4).
又∵直線OA:y2=kx(k為常數(shù),k>0),
∴4=kt,則k=(k>0).
(2)①當(dāng)a=時,y1=x(x﹣t),其頂點坐標為(,﹣
).
對于y=
來說,當(dāng)x=時,y=
×
=﹣
,即點(,﹣
)在拋物線y=
上.
故當(dāng)a=時,拋物線y1=ax(x﹣t)的頂點在函數(shù)y=
的圖象上;
②如圖1,過點E作EK⊥x軸于點K.
∵AC⊥x軸,
∴AC∥EK.
∵點E是線段AB的中點,
∴K為BC的中點,
∴EK是△ACB的中位線,
∴EK=AC=2,CK=BC=2,
∴E(t+2,2).
∵點E在拋物線y1=x(x﹣t)上,
∴(t+2)(t+2﹣t)=2,
解得t=2.
(3)如圖2,
,則x=ax(x﹣t),
解得x=
+4,或x=0(不合題意,舍去)..
故點D的橫坐標是
+t.
當(dāng)x=
+t時,|y2﹣y1|=0,由題意得t+4=
+t,
解得a=(t>0).

點評:
本題考查了坐標與圖形的性質(zhì)、二次函數(shù)圖象上點的坐標特征、一次函數(shù)與二次函數(shù)交點坐標等知識點.解題時,注意“數(shù)形結(jié)合”數(shù)學(xué)思想的應(yīng)用.
練習(xí)冊系列答案
假期生活暑假安徽教育出版社系列答案
新課程暑假作業(yè)廣西師范大學(xué)出版社系列答案
高中暑假作業(yè)浙江教育出版社系列答案
少年素質(zhì)教育報暑假作業(yè)系列答案
金太陽全A加系列答案
創(chuàng)新導(dǎo)學(xué)案新課標寒假假期自主學(xué)習(xí)訓(xùn)練系列答案
超能學(xué)典暑假接力棒江蘇鳳凰少年兒童出版社系列答案
暑假提高班系列答案
完美假期暑假作業(yè)系列答案
快樂假期高考狀元假期學(xué)習(xí)方案暑假系列答案
相關(guān)習(xí)題
科目:初中數(shù)學(xué)
來源:2013年湖北省宜昌市高級中等學(xué)校招生考試數(shù)學(xué)
題型:044
如圖1,平面之間坐標系中,等腰直角三角形的直角邊BC在x軸正半軸上滑動,點C的坐標為(t,0),直角邊AC=4,經(jīng)過O,C兩點做拋物線y1=ax(x-t)(a為常數(shù),a>0),該拋物線與斜邊AB交于點E,直線OA:y2=kx(k為常數(shù),k>0)
(1)填空:用含t的代數(shù)式表示點A的坐標及k的值:A________,k=________;
(2)隨著三角板的滑動,當(dāng)a=
時:
①請你驗證:拋物線y1=ax(x-t)的頂點在函數(shù)y=-
x2的圖象上;
②當(dāng)三角板滑至點E為AB的中點時,求t的值;
(3)直線OA與拋物線的另一個交點為點D,當(dāng)t≤x≤t+4,|y2-y1|的值隨x的增大而減小,當(dāng)x≥t+4時,|y2-y1|的值隨x的增大而增大,求a與t的關(guān)系式及t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:
題型:解答題
如圖1,平面之間坐標系中,等腰直角三角形的直角邊BC在x軸正半軸上滑動,點C的坐標為(t,0),直角邊AC=4,經(jīng)過O,C兩點做拋物線y1=ax(x-t)(a為常數(shù),a>0),該拋物線與斜邊AB交于點E,直線OA:y2=kx(k為常數(shù),k>0)

(1)填空:用含t的代數(shù)式表示點A的坐標及k的值:A______,k=______;
(2)隨著三角板的滑動,當(dāng)a=
時:
①請你驗證:拋物線y1=ax(x-t)的頂點在函數(shù)y=
的圖象上;
②當(dāng)三角板滑至點E為AB的中點時,求t的值;
(3)直線OA與拋物線的另一個交點為點D,當(dāng)t≤x≤t+4,|y2-y1|的值隨x的增大而減小,當(dāng)x≥t+4時,|y2-y1|的值隨x的增大而增大,求a與t的關(guān)系式及t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:2013年初中畢業(yè)升學(xué)考試(湖北宜昌卷)數(shù)學(xué)(解析版)
題型:解答題
如圖1,平面之間坐標系中,等腰直角三角形的直角邊BC在x軸正半軸上滑動,點C的坐標為(t,0),直角邊AC=4,經(jīng)過O,C兩點做拋物線
(a為常數(shù),a>0),該拋物線與斜邊AB交于點E,直線OA:y2=kx(k為常數(shù),k>0)

(1)填空:用含t的代數(shù)式表示點A的坐標及k的值:A ,k= ;
(2)隨著三角板的滑動,當(dāng)a=
時:
①請你驗證:拋物線
的頂點在函數(shù)
的圖象上;
②當(dāng)三角板滑至點E為AB的中點時,求t的值;
(3)直線OA與拋物線的另一個交點為點D,當(dāng)t≤x≤t+4,|y2﹣y1|的值隨x的增大而減小,當(dāng)x≥t+4時,|y2﹣y1|的值隨x的增大而增大,求a與t的關(guān)系式及t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:2013年湖北省宜昌市中考數(shù)學(xué)試卷(解析版)
題型:解答題
如圖1,平面之間坐標系中,等腰直角三角形的直角邊BC在x軸正半軸上滑動,點C的坐標為(t,0),直角邊AC=4,經(jīng)過O,C兩點做拋物線y1=ax(x-t)(a為常數(shù),a>0),該拋物線與斜邊AB交于點E,直線OA:y2=kx(k為常數(shù),k>0)

(1)填空:用含t的代數(shù)式表示點A的坐標及k的值:A______,k=______;
(2)隨著三角板的滑動,當(dāng)a=
時:
①請你驗證:拋物線y1=ax(x-t)的頂點在函數(shù)y=
的圖象上;
②當(dāng)三角板滑至點E為AB的中點時,求t的值;
(3)直線OA與拋物線的另一個交點為點D,當(dāng)t≤x≤t+4,|y2-y1|的值隨x的增大而減小,當(dāng)x≥t+4時,|y2-y1|的值隨x的增大而增大,求a與t的關(guān)系式及t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com
版權(quán)聲明:本站所有文章,圖片來源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無意侵犯版權(quán),如有侵權(quán),請作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號: 滬ICP備07509807號-10 鄂公網(wǎng)安備42018502000812號