某村為方便村民夜間出行,計劃在村內(nèi)公路旁安裝如圖所示的路燈,已知路燈燈臂AB的長為1.2m,燈臂AB與燈柱BC所成的角(∠ABC)的大小為105°,要使路燈A與路面的距離AD為7m,試確定燈柱BC的高度.(結(jié)果保留兩位有效數(shù)字)

解:如圖,過點B作BE⊥AD,垂足為E,則四邊形BCDE為矩形.
∴DE=BC,∠CBE=90°.
∵∠ABC=105°,∴∠ABE=15°.
在△ABE中,AB=1.2,∠ABE=15°,
∴sin15°==,
∴AE=1.2×sin15°≈1.2×0.26=0.312
∴BC=DE=AD-AE=7-0.312=6.688≈6.7.
答:燈柱BC的高度約為6.7m.
分析:如圖,過點B作BE⊥AD,垂足為E,則四邊形BCDE為矩形,根據(jù)矩形的性質(zhì)和解直角三角形求解即可.
點評:本題考查了解直角三角形的應(yīng)用,解答此題的關(guān)鍵是作出輔助線,構(gòu)造直角三角形,將求燈柱高的問題轉(zhuǎn)化為解直角三角形的問題解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•邵陽)某村為方便村民夜間出行,計劃在村內(nèi)公路旁安裝如圖所示的路燈,已知路燈燈臂AB的長為1.2m,燈臂AB與燈柱BC所成的角(∠ABC)的大小為105°,要使路燈A與路面的距離AD為7m,試確定燈柱BC的高度.(結(jié)果保留兩位有效數(shù)字)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年湖南省邵陽市中考數(shù)學(xué)試卷(解析版) 題型:解答題

某村為方便村民夜間出行,計劃在村內(nèi)公路旁安裝如圖所示的路燈,已知路燈燈臂AB的長為1.2m,燈臂AB與燈柱BC所成的角(∠ABC)的大小為105°,要使路燈A與路面的距離AD為7m,試確定燈柱BC的高度.(結(jié)果保留兩位有效數(shù)字)

查看答案和解析>>

同步練習(xí)冊答案