若實數(shù)a、b、c在數(shù)軸上的位置如圖所示,那么化簡|a|+|a+b|-
c2
-|b-c|的結(jié)果是( 。
分析:先根據(jù)數(shù)軸上點的坐標(biāo)特點確定a,b,c的符號,再根據(jù)三點離原點的位置去絕對值符號,化簡即可.
解答:解:由圖可得,b<c<0<a,且|b|>|a|=|c|,
所以a+b<0,b-c<0,
則|a|+|a+b|-
c2
-|b-c|=a-a-b+c+b-c=0.
故選D.
點評:考查了數(shù)軸,解答此題時可以發(fā)現(xiàn)借助數(shù)軸用幾何方法化簡含有絕對值的式子,比較有關(guān)數(shù)的大小有直觀、簡捷,舉重若輕的優(yōu)勢.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•長寧區(qū)二模)若實數(shù)x、y滿足:|x|>|y|,則稱:x比y遠離0.如圖,已知A、B、C、D、E五點在數(shù)軸上對應(yīng)的實數(shù)分別是a、b、c、d、e.若從這五個數(shù)中隨機選一個數(shù),則這個數(shù)比其它數(shù)都遠離0的概率是
0
0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

所謂配方法其實就是逆用完全平方公式,即a2±2ab+b2=(a±b)2.該方法在數(shù)、式、方程等多方面應(yīng)用非常廣泛,如3+2
2
=12+2
2
+(
2
2;x2+2x+5=x2+2x+1+4=(x+1)2+4等等.請你用配方法解決以下問題:
(1)解方程:x2=5+2
6
;(不能出現(xiàn)形如
5+2
6
的雙重二次根式)
(2)若a2+4b2+c2-2a-8b+10c+30=0,解關(guān)于x的一元二次方程ax2-bx+c=0;
(3)求證:不論m為何值,解關(guān)于x的一元二次方程x2+(m-1)x+m-3=0總有兩個不等實數(shù)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

所謂配方法其實就是逆用完全平方公式,即a2±2ab+b2=(a+b)2.該方法在數(shù)、式、方程等多方面應(yīng)用非常廣泛,如
3+2
2
=12+2
2
+(
2
2=(1+
2
2;x2+2x+5=x2+2x+1+4=(x+1)2+4等等.請你用配方法解決以下問題:
(1)解方程:x2=5+2
6
;(不能出現(xiàn)形如
5+2
6
的雙重二次根式)
(2)求證:不論m為何值,解關(guān)于x的一元二次方程x2+(m-1)x+m-3=0總有兩個不等實數(shù)根.
(3)若a2+4b2+c2-2a-8b+10c+30=0,解關(guān)于x的一元二次方程ax2-bx+c=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

所謂配方法其實就是逆用完全平方公式,即.該方法在數(shù)、式、方程等多方面應(yīng)用非常廣泛,如;=等等.請你用配方法解決以下問題:

1.解方程:;(不能出現(xiàn)形如的雙重二次根式)

2.)若,解關(guān)于x的一元二次方程

3.求證:不論m為何值,解關(guān)于x的一元二次方程總有兩個不等實數(shù)根

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

所謂配方法其實就是逆用完全平方公式,即.該方法在數(shù)、式、方程等多方面應(yīng)用非常廣泛,如;=等等.請你用配方法解決以下問題:
【小題1】解方程:;(不能出現(xiàn)形如的雙重二次根式)
【小題2】)若,解關(guān)于x的一元二次方程;
【小題3】求證:不論m為何值,解關(guān)于x的一元二次方程總有兩個不等實數(shù)根

查看答案和解析>>

同步練習(xí)冊答案