精英家教網 > 初中數學 > 題目詳情
(2007•臨沂)如圖,在四邊形ABCD中,E、F、G、H分別是AB、BD、CD、AC的中點,要使四邊形EFGH是菱形,四邊形ABCD還應滿足的一個條件是   
【答案】分析:菱形的判別方法是說明一個四邊形為菱形的理論依據,常用三種方法:
①定義;
②四邊相等;
③對角線互相垂直平分.據此四邊形ABCD還應滿足的一個條件是AD=BC.等.答案不唯一.
解答:解:條件是AD=BC.
∵EH、GF分別是△ABC、△BCD的中位線,
∴EH∥=BC,GF∥=BC,
∴EH∥=GF,
∴四邊形EFGH是平行四邊形.
要使四邊形EFGH是菱形,則要使AD=BC,這樣,GH=AD,
∴GH=GF,
∴四邊形EFGH是菱形.
點評:此題主要考查三角形的中位線定理和菱形的判定.
練習冊系列答案
相關習題

科目:初中數學 來源:2007年全國中考數學試題匯編《二次函數》(07)(解析版) 題型:解答題

(2007•臨沂)如圖1,已知拋物線的頂點為A(2,1),且經過原點O,與x軸的另一個交點為B.
(1)求拋物線的解析式;
(2)若點C在拋物線的對稱軸上,點D在拋物線上,且以O、C、D、B四點為頂點的四邊形為平行四邊形,求D點的坐標;
(3)連接OA、AB,如圖2,在x軸下方的拋物線上是否存在點P,使得△OBP與△OAB相似?若存在,求出P點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年新人教版中考數學模擬試卷(1)(解析版) 題型:解答題

(2007•臨沂)如圖1,已知拋物線的頂點為A(2,1),且經過原點O,與x軸的另一個交點為B.
(1)求拋物線的解析式;
(2)若點C在拋物線的對稱軸上,點D在拋物線上,且以O、C、D、B四點為頂點的四邊形為平行四邊形,求D點的坐標;
(3)連接OA、AB,如圖2,在x軸下方的拋物線上是否存在點P,使得△OBP與△OAB相似?若存在,求出P點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年山東省泰安市寧陽縣中考數學模擬試卷(12)(解析版) 題型:解答題

(2007•臨沂)如圖1,已知拋物線的頂點為A(2,1),且經過原點O,與x軸的另一個交點為B.
(1)求拋物線的解析式;
(2)若點C在拋物線的對稱軸上,點D在拋物線上,且以O、C、D、B四點為頂點的四邊形為平行四邊形,求D點的坐標;
(3)連接OA、AB,如圖2,在x軸下方的拋物線上是否存在點P,使得△OBP與△OAB相似?若存在,求出P點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年湖北省黃岡市數學中考精品試卷之一(解析版) 題型:解答題

(2007•臨沂)如圖1,已知拋物線的頂點為A(2,1),且經過原點O,與x軸的另一個交點為B.
(1)求拋物線的解析式;
(2)若點C在拋物線的對稱軸上,點D在拋物線上,且以O、C、D、B四點為頂點的四邊形為平行四邊形,求D點的坐標;
(3)連接OA、AB,如圖2,在x軸下方的拋物線上是否存在點P,使得△OBP與△OAB相似?若存在,求出P點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源:2009年河北省中考數學模擬試卷(四)(解析版) 題型:選擇題

(2007•臨沂)如圖,某廠有許多形狀為直角梯形的鐵皮邊角料,為節(jié)約資源,現要按圖中所示的方法從這些邊角料上截取矩形(陰影部分)片備用,當截取的矩形面積最大時,矩形兩邊長x、y應分別為( )

A.x=10,y=14
B.x=14,y=10
C.x=12,y=15
D.x=15,y=12

查看答案和解析>>

同步練習冊答案