如上右圖,在矩形ABCD中,對(duì)角線AC、BD相交于點(diǎn)G,E為AD的中點(diǎn),連接BE交AC于點(diǎn)F,連接FD,若∠BFA=90°,則下列四對(duì)三角形:①△BEA與△ACD;②△FED與△DEB;③△CFD與△ABC;④△ADF與△CFB.其中相似的為

A.①④         B.①②             C.②③④           D.①②③

D

解析試題分析:解:根據(jù)題意得:∠BAE=∠ADC=∠AFE=90
∴∠AEF+∠EAF=90°,∠DAC+∠ACD=90°
∴∠AEF=∠ACD
∴①中兩三角形相似;
容易判斷△AFE∽△BAE,得
又∵AE=ED,∴
而∠BED=∠BED,∴△FED∽△DEB.故②正確;
∵AB∥CD,
∴∠BAC=∠GCD,
∵∠ABE=∠DAF,∠EBD=∠EDF,且∠ABG=∠ABE+∠EBD,
∴∠ABG=∠DAF+∠EDF=∠DFC;
∵∠ABG=∠DFC,∠BAG=∠DCF,
∴△CFD∽△ABG,故③正確;
所以相似的有①②③.
考點(diǎn):相似三角形
點(diǎn)評(píng):本題難度較低,主要考查學(xué)生對(duì)相似三角形判定性質(zhì)的掌握。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省泰州市姜堰區(qū)四校八年級(jí)下學(xué)期第三次聯(lián)考數(shù)學(xué)試卷(解析版) 題型:選擇題

如上右圖,在矩形ABCD中,對(duì)角線AC、BD相交于點(diǎn)G,E為AD的中點(diǎn),連接BE交AC于點(diǎn)F,連接FD,若∠BFA=90°,則下列四對(duì)三角形:①△BEA與△ACD;②△FED與△DEB;③△CFD與△ABC;④△ADF與△CFB.其中相似的為

A.①④         B.①②             C.②③④           D.①②③

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

如右圖,在矩形ABCD中,對(duì)角線AC、BD相交于點(diǎn)G,E為AD的中點(diǎn),連接BE交AC于點(diǎn)F,連接FD,若∠BFA=90°,則下列四對(duì)三角形:①△BEA與△ACD;②△FED與△DEB;③△CFD與△ABC;④△ADF與△CFB.其中相似的為


  1. A.
    ①④
  2. B.
    ①②
  3. C.
    ②③④
  4. D.
    ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如上右圖,在矩形ABCD中,對(duì)角線AC、BD相交于點(diǎn)G,E為AD的中點(diǎn),連接BE交AC于點(diǎn)F,連接FD,若∠BFA=90°,則下列四對(duì)三角形:①△BEA與△ACD;②△FED與△DEB;③△CFD與△ABC;④△ADF與△CFB.其中相似的為

  A.①④           B.①②             C.②③④           D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如上右圖,在矩形ABCD中,對(duì)角線AC、BD相交于點(diǎn)G,E為AD的中點(diǎn),連接BE交AC于點(diǎn)F,連接FD,若∠BFA=90°,則下列四對(duì)三角形:①△BEA與△ACD;②△FED與△DEB;③△CFD與△ABC;④△ADF與△CFB.其中相似的為

  A.①④           B.①②             C.②③④           D.①②③

查看答案和解析>>

同步練習(xí)冊(cè)答案