如圖1,已知直線y=x+3與x軸交于點A,與y軸交于點B,拋物線y=-x2+bx+c經(jīng)過A、B兩點,與x軸交于另一個點C,對稱軸與直線AB交于點E,拋物線頂點為D.
(1)求拋物線的解析式;
(2)在第三象限內(nèi),F為拋物線上一點,以A、E、F為頂點的三角形面積為3,求點F的坐標;
(3)點P從點D出發(fā),沿對稱軸向下以每秒1個單位長度的速度勻速運動,設運動的時間為t秒,當t為何值時,以P、B、C為頂點的三角形是直角三角形?直接寫出所有符合條件的t值.
(1)y=-x2-2x+3;(2)(,)?? (3)當t為秒或2秒或3秒或秒時,以P、B、C為頂點的三角形是直角三角形
【解析】
試題分析:(1)先由直線AB的解析式為y=x+3,求出它與x軸的交點A、與y軸的交點B的坐標,再將A、B兩點的坐標代入y=-x2+bx+c,運用待定系數(shù)法即可求出拋物線的解析式;
(2)設第三象限內(nèi)的點F的坐標為(m,-m2-2m+3),運用配方法求出拋物線的對稱軸及頂點D的坐標,再設拋物線的對稱軸與x軸交于點G,連接FG,根據(jù)S△AEF=S△AEG+S△AFG-S△EFG=3,列出關于m的方程,解方程求出m的值,進而得出點F的坐標;
(3)設P點坐標為(-1,n).先由B、C兩點坐標,運用勾股定理求出BC2=10,再分三種情況進行討論:①∠PBC=90°,先由勾股定理得出PB2+BC2=PC2,據(jù)此列出關于n的方程,求出n的值,再計算出PD的長度,然后根據(jù)時間=路程÷速度,即可求出此時對應的t值;②∠BPC=90°,同①可求出對應的t值;③∠BCP=90°,同①可求出對應的t值.
試題解析:(1)∵y=x+3與x軸交于點A,與y軸交于點B,
∴當y=0時,x=-3,即A點坐標為(-3,0),
當x=0時,y=3,即B點坐標為(0,3),
將A(-3,0),B(0,3)代入y=-x2+bx+c,得
, 解得,
∴拋物線的解析式為y=-x2-2x+3;
(2)如圖1,
設第三象限內(nèi)的點F的坐標為(m,-m2-2m+3),則m<0,-m2-2m+3<0.
∵y=-x2-2x+3=-(x+1)2+4,
∴對稱軸為直線x=-1,頂點D的坐標為(-1,4),
設拋物線的對稱軸與x軸交于點G,連接FG,則G(-1,0),AG=2.
∵直線AB的解析式為y=x+3,
∴當x=-1時,y=-1+3=2,
∴E點坐標為(-1,2).
∵S△AEF=S△AEG+S△AFG-S△EFG=×2×2+×2×(m2+2m-3)-×2×(-1-m)=m2+3m,
∴以A、E、F為頂點的三角形面積為3時,m2+3m=3,
解得:,(舍去),
當時,-m2-2m+3=-m2-3m+m+3=-3+m+3=m=,∴點F的坐標為(,);
(3)設P點坐標為(-1,n).
∵B(0,3),C(1,0),
∴BC2=12+32=10.
分三種情況:①如圖2,如果∠PBC=90°,那么PB2+BC2=PC2,
即(0+1)2+(n-3)2+10=(1+1)2+(n-0)2,
化簡整理得6n=16,解得n=,
∴P點坐標為(-1,),
∵頂點D的坐標為(-1,4),
∴PD=4-=,
∵點P的速度為每秒1個單位長度,
∴t1=;
②如圖3,如果∠BPC=90°,那么PB2+PC2=BC2,
即(0+1)2+(n-3)2+(1+1)2+(n-0)2=10,
化簡整理得n2-3n+2=0,解得n=2或1,
∴P點坐標為(-1,2)或(-1,1),
∵頂點D的坐標為(-1,4),
∴PD=4-2=2或PD=4-1=3,
∵點P的速度為每秒1個單位長度,
∴t2=2,t3=3;
③如圖4,如果∠BCP=90°,那么BC2+PC2=PB2,
即10+(1+1)2+(n-0)2=(0+1)2+(n-3)2,
化簡整理得6n=-4,解得n=-,
∴P點坐標為(-1,-),
∵頂點D的坐標為(-1,4),
∴PD=4+=,
∵點P的速度為每秒1個單位長度,
∴t4=;
綜上可知,當t為秒或2秒或3秒或秒時,以P、B、C為頂點的三角形是直角三角形.
考點: 二次函數(shù)綜合題.
科目:初中數(shù)學 來源: 題型:
| ||
3 |
3 |
CF |
CF |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
4 | 3 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
4 |
27 |
22 |
3 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com