(2008•衢州)已知n是正整數(shù),Pn(xn,yn)是反比例函數(shù)y=圖象上的一列點,其中x1=1,x2=2,…,xn=n,記T1=x1y2,T2=x2y3,…,Tn=xnyn+1;若T1=1,則T1•T2•…•Tn=   
【答案】分析:根據反比例函數(shù)圖象上點的坐標特征解答.
解答:解:T1•T2•…•Tn=x1y2•x2y3…xnyn+1=x1•x2•x3…xn=x1,
又因為x1=1,
所以原式=,
又因為T1=1,所以x1y2=1,又因為x1=1,所以y2=1,即=1,又x2=2,k=2,
T1=1時,于是T1•T2•…•Tn=
點評:解答此題的關鍵是將x1•x2•x3…xn的相同字母消掉,使原式化簡為一個僅含k的代數(shù)式,然后解答.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(04)(解析版) 題型:解答題

(2008•衢州)已知直角梯形紙片OABC在平面直角坐標系中的位置如圖所示,四個頂點的坐標分別為O(0,0),A(10,0),B(8,2),C(0,2),點T在線段OA上(不與線段端點重合),將紙片折疊,使點A落在射線AB上(記為點A′),折痕經過點T,折痕TP與射線AB交于點P,設點T的橫坐標為t,折疊后紙片重疊部分(圖中的陰影部分)的面積為S.
(1)求∠OAB的度數(shù),并求當點A′在線段AB上時,S關于t的函數(shù)關系式;
(2)當紙片重疊部分的圖形是四邊形時,求t的取值范圍;
(3)S存在最大值嗎?若存在,求出這個最大值,并求此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《四邊形》(06)(解析版) 題型:解答題

(2008•衢州)已知直角梯形紙片OABC在平面直角坐標系中的位置如圖所示,四個頂點的坐標分別為O(0,0),A(10,0),B(8,2),C(0,2),點T在線段OA上(不與線段端點重合),將紙片折疊,使點A落在射線AB上(記為點A′),折痕經過點T,折痕TP與射線AB交于點P,設點T的橫坐標為t,折疊后紙片重疊部分(圖中的陰影部分)的面積為S.
(1)求∠OAB的度數(shù),并求當點A′在線段AB上時,S關于t的函數(shù)關系式;
(2)當紙片重疊部分的圖形是四邊形時,求t的取值范圍;
(3)S存在最大值嗎?若存在,求出這個最大值,并求此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年四川省自貢市富順縣代寺學區(qū)中心校中考數(shù)學二模試卷(解析版) 題型:解答題

(2008•衢州)已知直角梯形紙片OABC在平面直角坐標系中的位置如圖所示,四個頂點的坐標分別為O(0,0),A(10,0),B(8,2),C(0,2),點T在線段OA上(不與線段端點重合),將紙片折疊,使點A落在射線AB上(記為點A′),折痕經過點T,折痕TP與射線AB交于點P,設點T的橫坐標為t,折疊后紙片重疊部分(圖中的陰影部分)的面積為S.
(1)求∠OAB的度數(shù),并求當點A′在線段AB上時,S關于t的函數(shù)關系式;
(2)當紙片重疊部分的圖形是四邊形時,求t的取值范圍;
(3)S存在最大值嗎?若存在,求出這個最大值,并求此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年江蘇省鹽城市新區(qū)、鞍湖聯(lián)考一模試卷(顧仁富、吉留萍)(解析版) 題型:解答題

(2008•衢州)已知直角梯形紙片OABC在平面直角坐標系中的位置如圖所示,四個頂點的坐標分別為O(0,0),A(10,0),B(8,2),C(0,2),點T在線段OA上(不與線段端點重合),將紙片折疊,使點A落在射線AB上(記為點A′),折痕經過點T,折痕TP與射線AB交于點P,設點T的橫坐標為t,折疊后紙片重疊部分(圖中的陰影部分)的面積為S.
(1)求∠OAB的度數(shù),并求當點A′在線段AB上時,S關于t的函數(shù)關系式;
(2)當紙片重疊部分的圖形是四邊形時,求t的取值范圍;
(3)S存在最大值嗎?若存在,求出這個最大值,并求此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年湖北省孝感市市直五校聯(lián)考中考數(shù)學試卷(航天中學 鄧鳴鳳、張海濱)(解析版) 題型:填空題

(2008•衢州)已知n是正整數(shù),Pn(xn,yn)是反比例函數(shù)y=圖象上的一列點,其中x1=1,x2=2,…,xn=n,記T1=x1y2,T2=x2y3,…,Tn=xnyn+1;若T1=1,則T1•T2•…•Tn=   

查看答案和解析>>

同步練習冊答案