精英家教網 > 初中數學 > 題目詳情

已知:如圖,Rt△ABC中,∠ACB=90°,AC=BC,點D為AB邊上一點,且不與A、B兩點重合,AE⊥AB,AE=BD,連接DE、DC.
(1)求證:△ACE≌△BCD;
(2)猜想:△DCE是______三角形;并說明理由.

(1)證明:
∵∠ACB=90°,AC=BC,
∴∠B=∠2=45°.
∵AE⊥AB,
∴∠1+∠2=90°.
∴∠1=45°.
∴∠1=∠B.
在△ACE和△BCD中,

∴△ACE≌△BCD(SAS).

(2)猜想:△DCE是等腰直角三角形;
理由說明:
∵△ACE≌△BCD,
∴CE=CD,∠3=∠4.
∵∠4+∠5=90°,
∴∠3+∠5=90°.
即∠ECD=90°.
∴△DCE是等腰直角三角形.
分析:(1)由已知可得△ABC是等腰直角三角形,由AE⊥AB即可得到∠1=∠B,從而可利用SAS判定△ACE≌△BCD.
(2)根據已知可猜想其為等腰直角三角形,由第一問可得CE=CD,∠3=∠4,根據等角的性質可推出∠ECD=90°,從而即得到了答案.
點評:此題主要考查學生對全等三角形的判定方法及等腰直角三角形的判定的綜合運用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

22、已知:如圖,Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,試以圖中標有字母的點為端點,連接兩條線段,如果你所連接的兩條線段滿足相等,垂直或平行關系中的一種,那么請你把它寫出來并證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

20、已知:如圖,Rt△ABC中,∠ACB=90°,AC=BC,點D為AB邊上一點,且不與A、B兩點重合,AE⊥AB,AE=BD,連接DE、DC.
(1)求證:△ACE≌△BCD;
(2)猜想:△DCE是
等腰直角
三角形;并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,Rt△AOB的兩直角邊OA、OB分別在x軸的正半軸和y軸的負半軸上,C為OA上一點且O精英家教網C=OB,拋物線y=(x-2)(x-m)-(p-2)(p-m)(m、p為常數且m+2≥2p>0)經過A、C兩點.
(1)用m、p分別表示OA、OC的長;
(2)當m、p滿足什么關系時,△AOB的面積最大.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知:如圖,Rt△ABC和Rt△ADC,∠ABC=∠ADC=90°,點E是AC的中點.
求證:∠EBD=∠EDB.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知:如圖,Rt△ABC中,∠C=90°,M是AB的中點,AM=AN,MN∥AC.
求證:MN=AC.

查看答案和解析>>

同步練習冊答案