如圖,直線l經(jīng)過⊙O的圓心O,且與⊙O交于A、B兩點,點C在⊙O上,且∠AOC=30°,點P是直線l上的一個動點(與圓心O不重合),直線CP與⊙O相交于另一點Q,如果QP=QO,則∠OCP=         
20或40或100

試題分析:解:①根據(jù)題意,畫出圖(1),
在△QOC中,OC=OQ,∴∠OQC=∠OCP,
在△OPQ中,QP=QO,∴∠QOP=∠QPO,
又∵∠AOC=30°,∴∠QPO=∠OCP+∠AOC=∠OCP+30°,
在△OPQ中,∠QOP+∠QPO+∠OQC=180°,即(∠OCP+30°)+(∠OCP+30°)+∠OCP=180°,
整理得,3∠OCP=120°,∴∠OCP=40°.
②當P在線段OA的延長線上(如圖2)
∵OC=OQ,∴∠OQP=(180°-∠QOC)×①,
∵OQ=PQ,∴∠OPQ=(180°-∠OQP)×②,
在△OQP中,30°+∠QOC+∠OQP+∠OPQ=180°③,
把①②代入③得:60°+∠QOC=∠OQP,
∵∠OQP=∠QCO,∴∠QOC+2∠OQP=∠QOC+2(60°+∠QOC)=180°,
∴∠QOC=20°,則∠OQP=80°∴∠OCP=100°;
③當P在線段OA的反向延長線上(如圖3),
∵OC=OQ,∴∠OCP=∠OQC=(180°-∠COQ)×①,
∵OQ=PQ,∴∠P=(180°-∠OQP)×②,
∵∠AOC=30°,∴∠COQ+∠POQ=150°③,
∵∠P=∠POQ,2∠P=∠OCP=∠OQC④,①②③④聯(lián)立得∠P=10°,
∴∠OCP=180°-150°-10°=20°.
故答案為:40°、20°、100°.
點評:本題難度較高。主要考查了圓的認識及等腰三角形等邊對等角的性質,先假設存在并進行分類討論是進行解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

一個圓錐的側面積是底面積的2倍,則圓錐側面展開圖的扇形圓心角是(   )
A.1200B.1800C.2400D.3000

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠ACB=90°,AC=6cm ,BC=6cm,經(jīng)過A,B的直線l以1cm/秒的速度向下作勻速平移運動,交BC于點B′,交CD于點 D′,與此同時,點P從點B′ 出發(fā),在直線l上以1cm/秒的速度沿直線l向右下方向作勻速運動.設它們運動的時間為t秒.

(1)你求出的AB的長是     
(2)過點C作CD⊥AB于點D,t為何值時,點P移動到CD上?
(3)t為何值時,以點P為圓心、1cm為半徑的圓與直線CD相切?
(4)以點P為圓心、1 cm為半徑的⊙P與CD所在的直線相交時,是否存在點P與兩個交點構成的三角形是等邊三角形?若存在,直接寫出t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,△ABC與△ADE都是等腰直角三角形,∠ACB和∠E都是直角,點CAD邊上,BC=,把△ABC繞點A 按順時針方向旋轉n 度后恰好與△ADE重合,則n的值是         ,點C經(jīng)過的路線的長是         ,線段BC在上述旋轉過程中所掃過部分的面積是        

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

將一個底面半徑為2,高為4的圓錐形紙筒沿一條母線剪開,所得到的側面展開圖形面積為        

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

平面直角坐標系中,原點O是正三角形ABC外接圓的圓心,點A軸的正半軸上,△ABC的邊長為6.以原點O為旋轉中心將△ABC沿逆時針方向旋轉角,得到△,點、、分別為點A、B、C的對應點.

(1)當=60時,
①請在圖1中畫出△;
②若AB分別與、交于點DE,則DE的長為_______;
(2)如圖2,當AB時,分別與AB、BC交于點F、G,則點的坐標為         _____,△FBG的周長為_____,△ABC與△重疊部分的面積為_______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

兩圓的半徑分別為2和3,若圓心距為5,則這兩圓的位置關系是
A.相交 B.外離C.外切D.內(nèi)切

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,P為⊙O外一點,PA、PB分別切⊙O于A、B,CD切⊙O于點E,分別交PA、PB于點C、D,若PA=5,則△PCD的周長為      .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知兩圓的半徑分別為2和3,圓心距為4,則兩圓的位置關系為       ;

查看答案和解析>>

同步練習冊答案