如圖所示,AB是⊙O的直徑,AD是弦,∠DBC=∠A.
(1)求證:BC與⊙O相切;
(2)若OC∥AD,OC交BD于點(diǎn)E,BD=6,CE=4,求AD的長(zhǎng).

【答案】分析:(1)要證BC與⊙O相切;只需證明OB⊥BC即可,根據(jù)角之間的互余關(guān)系易得證明;
(2)根據(jù)平行線的性質(zhì)可得OC⊥BD,進(jìn)而可得△OBE∽△BCE,可得出比例關(guān)系式,代入數(shù)據(jù)即可得到答案.
解答:(1)證明:∵AB是直徑,
∴∠D=90°,AD⊥BD.(1分)
∴∠A+∠ABD=90°.(2分)
又∵∠DBC=∠A,
∴∠DBC+∠ABD=90°,
即∠ABC=90°.
∴OB⊥BC.(3分)
∵OB是半徑,
∴BC與⊙O相切.(4分)

(2)解:∵OC∥AD,∠D=90°,
∴∠OEB=∠D=90°.
∴OC⊥BD.(5分)
∴BE=DE=BD=3.(6分)
∵BE⊥OC,∠OBC=90°,
∴△OBE∽△BCE.(7分)
,
.(9分)
∵OA=OB,DE=EB,
∴AD=2EO=.(10分)
點(diǎn)評(píng):本題考查切線的判定及線段長(zhǎng)度的求法,要求學(xué)生掌握常見的解題方法,并能結(jié)合圖形選擇簡(jiǎn)單的方法解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,AB是⊙O的直徑,AD是弦,∠DBC=∠A.
(1)求證:BC與⊙O相切;
(2)若OC∥AD,OC交BD于點(diǎn)E,BD=6,CE=4,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,AB是⊙O的直徑,AD是弦,∠DBC=∠A,OC⊥BD于點(diǎn)E.
(1)求證:BC是⊙O的切線;
(2)若BD=12,EC=10,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)P,CD=10cm,AP:PB=1:5,則⊙O的半徑為
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,AB是⊙O直徑,OD⊥弦BC于點(diǎn)F,且交⊙O于點(diǎn)E,且∠AEC=∠ODB.
(1)判斷直線BD和⊙O的位置關(guān)系,并給出證明;
(2)當(dāng)AB=10,BC=8時(shí),求△DFB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,AB是⊙O直徑,∠D=35°,則∠BOC等于( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案