直線與x、y軸分別交于點(diǎn)A、C.拋物線的圖象經(jīng)過A、C和點(diǎn)B(1,0).
(1)求拋物線的解析式;
(2)在直線AC上方的拋物線上有一動點(diǎn)D,當(dāng)D與直線AC的距離DE最大時,求出點(diǎn)D的坐標(biāo),并求出最大距離是多少?
解:(1)在直線解析式中,令x=0,得y=﹣2;令y=0,得x=4,
∴A(4,0),C(0,﹣2)。
設(shè)拋物線的解析式為y=ax2+bx+c,
∵點(diǎn)A(4,0),B(1,0),C(0,﹣2)在拋物線上,
∴,解得。
∴拋物線的解析式為:。
(2)設(shè)點(diǎn)D坐標(biāo)為(x,y),。
在Rt△AOC中,OA=4,OC=2,由勾股定理得:AC=。
如圖,連接CD、AD,過點(diǎn)D作DF⊥y軸于點(diǎn)F,過點(diǎn)A作AG⊥FD交FD的延長線于點(diǎn)G,
則FD=x,DG=4﹣x,OF=AG=y,F(xiàn)C=y+2。
S△ACD=S梯形AGFC﹣S△CDF﹣S△ADG
=(AG+FC)•FG﹣FC•FD﹣DG•AG
=(y+y+2)×4﹣(y+2)•x﹣(4﹣x)•y
=2y﹣x﹣4
將代入得:S△ACD=2y﹣x﹣4=﹣x2+4x=﹣(x﹣2)2+4。
∴當(dāng)x=2時,△ACD的面積最大,最大值為4。
當(dāng)x=2時,y=1,∴D(2,1)。
∵S△ACD=AC•DE,AC=,
∴當(dāng)△ACD的面積最大時,高DE最大,
則DE的最大值為:。
∴當(dāng)D與直線AC的距離DE最大時,點(diǎn)D的坐標(biāo)為(2,1),最大距離為。
解析試題分析:(1)首先求出點(diǎn)A,點(diǎn)C的坐標(biāo);然后利用待定系數(shù)法求出拋物線的解析式。
(2)AC為定值,當(dāng)DE最大時,△ACD的面積最大,因此只需要求出△ACD面積的最大值即可。如圖所示,作輔助線,利用S△ACD=S梯形AGFC﹣S△CDF﹣S△ADG求出S△ACD的表達(dá)式,然后利用二次函數(shù)的性質(zhì)求出最大值,并進(jìn)而求出點(diǎn)D的坐標(biāo)和DE的最大值。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
某公司銷售一種進(jìn)價為20元/個的計(jì)算機(jī),其銷售量y(萬個)與銷售價格x(元/個)的變化如下表:
價格x(元/個) | … | 30 | 40 | 50 | 60 | … |
銷售量y(萬個) | … | 5 | 4 | 3 | 2 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,將△AOB繞點(diǎn)O順時針旋轉(zhuǎn)90°后得到△COD.
(1)點(diǎn)C的坐標(biāo)是 ,線段AD的長等于 ;
(2)點(diǎn)M在CD上,且CM=OM,拋物線y=x2+bx+c經(jīng)過點(diǎn)G,M,求拋物線的解析式;
(3)如果點(diǎn)E在y軸上,且位于點(diǎn)C的下方,點(diǎn)F在直線AC上,那么在(2)中的拋物線上是否存在點(diǎn)P,使得以C,E,F(xiàn),P為頂點(diǎn)的四邊形是菱形?若存在,請求出該菱形的周長l;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線y=ax2+bx+c的開口向下,與x軸交于點(diǎn)A(﹣3,0)和點(diǎn)B(1,0).與y軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求頂點(diǎn)D的坐標(biāo).(用含a的代數(shù)式表示);
(2)若△ACD的面積為3.
①求拋物線的解析式;
②將拋物線向右平移,使得平移后的拋物線與原拋物線交于點(diǎn)P,且∠PAB=∠DAC,求平移后拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
(2013年四川廣安10分)如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c經(jīng)過A、B、C三點(diǎn),已知點(diǎn)A(﹣3,0),B(0,3),C(1,0).
(1)求此拋物線的解析式.
(2)點(diǎn)P是直線AB上方的拋物線上一動點(diǎn),(不與點(diǎn)A、B重合),過點(diǎn)P作x軸的垂線,垂足為F,交直線AB于點(diǎn)E,作PD⊥AB于點(diǎn)D.
①動點(diǎn)P在什么位置時,△PDE的周長最大,求出此時P點(diǎn)的坐標(biāo);
②連接PA,以AP為邊作圖示一側(cè)的正方形APMN,隨著點(diǎn)P的運(yùn)動,正方形的大小、位置也隨之改變.當(dāng)頂點(diǎn)M或N恰好落在拋物線對稱軸上時,求出對應(yīng)的P點(diǎn)的坐標(biāo).(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A(﹣6,0),B(4,0),C(0,8),把△ABC沿直線BC翻折,點(diǎn)A的對應(yīng)點(diǎn)為D,拋物線y=ax2﹣10ax+c經(jīng)過點(diǎn)C,頂點(diǎn)M在直線BC上.
(1)證明四邊形ABCD是菱形,并求點(diǎn)D的坐標(biāo);
(2)求拋物線的對稱軸和函數(shù)表達(dá)式;
(3)在拋物線上是否存在點(diǎn)P,使得△PBD與△PCD的面積相等?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0)和B(3,0)兩點(diǎn),交y軸于點(diǎn)E.
(1)求此拋物線的解析式.
(2)若直線y=x+1與拋物線交于A、D兩點(diǎn),與y軸交于點(diǎn)F,連接DE,求△DEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知拋物線與x軸交于A.B兩點(diǎn),與y軸交于C點(diǎn),拋物線的頂點(diǎn)為D點(diǎn),點(diǎn)A的坐標(biāo)為(﹣1,0).
(1)求D點(diǎn)的坐標(biāo);
(2)如圖1,連接AC,BD并延長交于點(diǎn)E,求∠E的度數(shù);
(3)如圖2,已知點(diǎn)P(﹣4,0),點(diǎn)Q在x軸下方的拋物線上,直線PQ交線段AC于點(diǎn)M,當(dāng)∠PMA=∠E時,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
如圖,△ABO的面積為3,且AO=AB,雙曲線y=經(jīng)過點(diǎn)A,則k的值為( )
A. | B.3 | C.6 | D.9 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com