如圖,在△ABC中,∠BAC=90°,AB=AC,∠BAD=30°,AD=AE.則∠EDC的度數(shù)為________.

15°
分析:由∠BAC=90°,AB=AC,可知△ABC為等腰直角三角形,即∠B=45°,∠BAC=90°,已知∠BAD=30°,得∠DAE=90°-30°=60°,又AD=AE,則△ADE為等邊三角形,∠ADE=60°,由外角的性質(zhì)可求∠EDC的度數(shù).
解答:∵在△ABC中,∠BAC=90°,AB=AC,
∴∠B=45°,
又∵∠BAD=30°,
∴∠DAE=90°-30°=60°,
而AD=AE,∴△ADE為等邊三角形,則∠ADE=60°,
又∵∠EDC+∠ADE=∠B+∠BAD(外角定理),
即∠EDC=45°+30°-60°=15°.
故答案為:15°.
點(diǎn)評:本題考查了等腰三角形的性質(zhì).關(guān)鍵是根據(jù)等邊三角形的判定與性質(zhì)以及外角定理解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案