【題目】設(shè)點A(﹣1,y1)、B1,y2)、C2,y3)是拋物線y=﹣2x12+m上的三點,則y1、y2y3的大小關(guān)系的是_____(用連接).

【答案】y1<y3<y2

【解析】

先求出拋物線的對稱軸和開口方向,根據(jù)二次函數(shù)的性質(zhì)比較即可.

解:拋物線y=﹣2x12+m的開口向下,對稱軸是直線x1,當(dāng)x1時,yx的增大而增大,

A(﹣1,y1)、B1,y2)、C2,y3)是拋物線y=﹣2x12+m上的三點,

C關(guān)于對稱軸x1的對稱點是(0,y3),

101

∴y1y3y2

故答案為:y1y3y2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的二次函數(shù)y=m-2x2+m2-4m+5有最小值2,則m=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著綠城南寧近幾年城市建設(shè)的快速發(fā)展,對花木的需求量逐年提高某園林專業(yè)戶計劃投資種植花卉及樹木,根據(jù)市場調(diào)查與預(yù)測,種植樹木的利潤與投資量成正比例關(guān)系,如圖1所示;種植花卉的利潤與投資量成二次函數(shù)關(guān)系,如圖2所示注:利潤與投資量的單位:萬元

(1)分別求出利潤關(guān)于投資量的函數(shù)關(guān)系式;

(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,他至少獲得多少利潤?他能獲取的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展了“互助、平等、感恩、和諧、進取”主題班會活動,活動后,就活動的5個主題進行了抽樣調(diào)查(每位同學(xué)只選最關(guān)注的一個),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計圖.根據(jù)圖中提供的信息,解答下列問題:

(1)這次調(diào)查的學(xué)生共有多少名?

(2)請將條形統(tǒng)計圖補充完整,并在扇形統(tǒng)計圖中計算出“進取”所對應(yīng)的圓心角的度數(shù).

(3)如果要在這5個主題中任選兩個進行調(diào)查,根據(jù)(2)中調(diào)查結(jié)果,用樹狀圖或列表法,求恰好選到學(xué)生關(guān)注最多的兩個主題的概率(將互助、平等、感恩、和諧、進取依次記為A、B、C、D、E).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a:b=3:2,且3a2b4,則ab____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直線AB、CD相交于點O。若OM=ON=MN,那么∠APQ+∠CQP=。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等邊△ABC中,點D是BC邊的中點,點P為AB 邊上的一個動點,設(shè)AP= ,PD= ,若之間的函數(shù)關(guān)系的圖象如圖2所示,則等邊△ABC的面積為( )

A. 4 B. C. 12 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種藥品原價為36元/盒,經(jīng)過連續(xù)兩次降價后售價為25元/盒.設(shè)平均每次降價的百分率為x,根據(jù)題意所列方程正確的是( )
A.36(1﹣x)2=36﹣25
B.36(1﹣2x)=25
C.36(1﹣x)2=25
D.36(1﹣x2)=25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,正方形ABCD的對角線AC,BD相交于點O,正方形A′B′C′D′的頂點A′與點O重合,A′B′交BC于點E,A′D′交CD于點F.
(1)求證:OE=OF;
(2)若正方形ABCD的對角線長為4,求兩個正方形重疊部分的面積為

查看答案和解析>>

同步練習(xí)冊答案