用配方法解關(guān)于的一元二次方程時(shí),配方后的方程可以是(    )

  A.       B.         C.      D.


A  解析:由,得.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


不等式組的整數(shù)解的個(gè)數(shù)是( 。

 

A.

3

B.

5

C.

7

D.

無數(shù)個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


在“綠滿鄂南”行動(dòng)中,某社區(qū)計(jì)劃對(duì)面積為1800m2的區(qū)域進(jìn)行綠化.經(jīng)投標(biāo),由甲、乙兩個(gè)工程隊(duì)來完成,已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化面積的2倍,并且在獨(dú)立完成面積為400m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4天.

(1)求甲、乙兩工程隊(duì)每天能完成綠化的面積.

(2)設(shè)甲工程隊(duì)施工x天,乙工程隊(duì)施工y天,剛好完成綠化任務(wù),求y與x的函數(shù)解析式.

(3)若甲隊(duì)每天綠化費(fèi)用是0.6萬元,乙隊(duì)每天綠化費(fèi)用為0.25萬元,且甲乙兩隊(duì)施工的總天數(shù)不超過26天,則如何安排甲乙兩隊(duì)施工的天數(shù),使施工總費(fèi)用最低?并求出最低費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如果m,n是兩個(gè)不相等的實(shí)數(shù),且滿足m2﹣m=3,n2﹣n=3,那么代數(shù)式2n2﹣mn+2m+2015= 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


閱讀資料:

如圖1,在平面之間坐標(biāo)系xOy中,A,B兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A,B兩點(diǎn)間的距離為AB= .

我們知道,圓可以看成到圓心距離等于半徑的點(diǎn)的集合,如圖2,在平面直角坐標(biāo)系xoy中,A(x,y)為圓上任意一點(diǎn),則A到原點(diǎn)的距離的平方為OA2=|x﹣0|2+|y﹣0|2,當(dāng)⊙O的半徑為r時(shí),⊙O的方程可寫為:x2+y2=r2

問題拓展:如果圓心坐標(biāo)為P(a,b),半徑為r,那么⊙P的方程可以寫為。 綜合應(yīng)用:

如圖3,⊙P與x軸相切于原點(diǎn)O,P點(diǎn)坐標(biāo)為(0,6),A是⊙P上一點(diǎn),連接OA,使tan∠POA=,作PD⊥OA,垂足為D,延長(zhǎng)PD交x軸于點(diǎn)B,連接AB.

①證明AB是⊙P的切點(diǎn);

②是否存在到四點(diǎn)O,P,A,B距離都相等的點(diǎn)Q?若存在,求Q點(diǎn)坐標(biāo),并寫出以Q為圓心,以O(shè)Q為半徑的⊙O的方程;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


若關(guān)于的一元二次方程有兩個(gè)相等實(shí)數(shù)根,則的值是( 。

A. -1          B. 1        C. -4          D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


若矩形的長(zhǎng)是,寬是,一個(gè)正方形的面積等于該矩形的面積,則正方形的邊長(zhǎng)是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


矩形、菱形、正方形都具有的性質(zhì)是( 。

A.每一條對(duì)角線平分一組對(duì)角       B.對(duì)角線相等

C.對(duì)角線互相平分                  D.對(duì)角線互相垂直

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,正方形ABCD中,點(diǎn)E在對(duì)角線AC上,連接EB、ED.

(1)求證:△BCE≌△DCE;

(2)延長(zhǎng)BEAD于點(diǎn)F,若∠DEB=140º,求∠AFE的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案