AB=AC DE=DF BE=CF
分析:根據(jù)平行線的性質(zhì)得到∠1=∠F、∠2=∠3.已知DE=DF,∠EDG=∠FDC,所以利用ASA判定△EDG≌△FDC,得到EG=CF,再根據(jù)等腰三角形的性質(zhì)得到∠B=∠2=∠3,從而得到BE=EG=CF.
解答:
解法1,如圖,已知EG∥AC,AB=AC,DE=DF,
求證:BE=CF.
證明:∵EG∥AC,
∴∠1=∠F,∠2=∠3.
又∵DE=DF,∠EDG=∠FDC,
∴△EDG≌△FDC.
∴EG=CF.
∵AB=AC,
∴∠B=∠2.
∴∠B=∠3.
∴BE=EG.
∴BE=CF.
解法2,如圖,已知EG∥AC,AB=AC,BE=CF,
求證:DE=DF.
證明:∵EG∥AC,
∴∠1=∠F,∠2=∠3.
∵AB=AC,
∴∠B=∠2.
∴∠B=∠3.
∴BE=EG.
∴EG=CF.
又∵∠EDG=∠FDC,
∴△DEG≌△DFC.
DE=DF.
解法3,如圖,已知EG∥AC,DE=DF,BE=CF,
求證:AB=AC.
證明:∵EG∥AC,
∴2=∠3.
又∵∠EDG=∠FDC,DE=DF,
∴△DEG≌△DFC.
∴EG=CF.
∵BE=EG,
∴∠B=∠3.
∴AB=AC.
點評:此題主要考查全等三角形的判定和性質(zhì);此類題目,先要觀察可能全等的三角形,然后結合條件進行取舍,證明.