已知二次函數(shù)y=ax2+bx-2的圖象過點(diǎn)(1,0),一次函數(shù)的圖象經(jīng)過原點(diǎn)和點(diǎn)(1,-b),其中a>b>0且a,b為實(shí)數(shù).
(1)求一次函數(shù)的表達(dá)式;(用含b的式子表示)
(2)試說明:這兩個(gè)函數(shù)的圖象交于不同的兩點(diǎn).
分析:(1)一次函數(shù)經(jīng)過原點(diǎn),說明這個(gè)一次函數(shù)是正比例函數(shù),將點(diǎn)(1,-b)的坐標(biāo)代入,即可求得這個(gè)一次函數(shù)的表達(dá)式.
(2)將點(diǎn)(1,0)代入拋物線的解析式中,可得到a、b的關(guān)系式,用b替換掉a后聯(lián)立一次函數(shù)的解析式,可得到一個(gè)關(guān)于x的一元二次方程,判斷方程的根的判別式是否大于0即可
解答:解:(1)∵一次函數(shù)過原點(diǎn),
∴設(shè)一次函數(shù)的解析式為y=kx;
∵一次函數(shù)過(1,-b),
∴y=-bx;

(2)∵y=ax2+bx-2過(1,0),即a+b=2,
∴b=2-a.
y=-bx
y=ax2+bx-2
,得ax2+bx-2=-bx,
∴ax2+(2-a)x-2=-(2-a)x,
∴ax2+2(2-a)x-2=0①;
∵△=4(2-a)2+8a=16-16a+4a2+8a=4(a2-2a+1)+12=4(a-1)2+12>0,
∴方程①有兩個(gè)不相等的實(shí)數(shù)根,
∴方程組有兩組不同的解,
∴兩函數(shù)圖象有兩個(gè)不同的交點(diǎn).
點(diǎn)評:本題考查的是二次函數(shù)的性質(zhì),熟知一次函數(shù)與二次函數(shù)的交點(diǎn)問題是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、已知二次函數(shù)y=a(x+1)2+c的圖象如圖所示,則函數(shù)y=ax+c的圖象只可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)y=ax+bx+c的圖象與x軸交于點(diǎn)A.B,與y軸交于點(diǎn) C.

(1)寫出A. B.C三點(diǎn)的坐標(biāo);(2)求出二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省廣州市海珠區(qū)九年級上學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:選擇題

已知二次函數(shù)y=ax²+bx+c(a≠0)的圖像如圖所示,則下列結(jié)論中正確的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一個(gè)根

C.a+b+c=0          D.當(dāng)x<1時(shí),y隨x的增大而減小

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

已知二次函數(shù)y=ax+bx+c(a≠0,a,b,c為常數(shù)),對稱軸為直線x=1,它的部分自變量與函數(shù)值y的對應(yīng)值如下表,寫出方程ax2+bx+c=0的一個(gè)正數(shù)解的近似值________(精確到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=ax²+bx+c(c≠0)的圖像如圖4所示,下列說法錯(cuò)誤的是:

(A)圖像關(guān)于直線x=1對稱

(B)函數(shù)y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的兩個(gè)根

(D)當(dāng)x<1時(shí),y隨x的增大而增大

查看答案和解析>>

同步練習(xí)冊答案