(2007•太原)數(shù)學(xué)課上,同學(xué)們探究下面命題的正確性:頂角為36°的等腰三角形具有一種特性,即經(jīng)過(guò)它某一頂點(diǎn)的一條直線可把它分成兩個(gè)小等腰三角形.為此,請(qǐng)你解答問(wèn)題(1).

(1)已知:如圖①,在△ABC中,AB=AC,∠A=36°,直線BD平分∠ABC交AC于點(diǎn)D.求證:△ABD與△DBC都是等腰三角形;
(2)在證明了該命題后,小喬發(fā)現(xiàn):下面兩個(gè)等腰三角形如圖②、③也具有這種特性.請(qǐng)你在圖②、圖③中分別畫(huà)出一條直線,把它們分成兩個(gè)小等腰三角形,并在圖中標(biāo)出所有等腰三角形兩個(gè)底角的度數(shù);
(3)接著,小喬又發(fā)現(xiàn):其它一些非等腰三角形也具有這樣的特性,即過(guò)它其中一個(gè)頂點(diǎn)畫(huà)一條直線可以將原三角形分成兩個(gè)小等腰三角形.請(qǐng)你畫(huà)出兩個(gè)不同類型且具有這種特性的三角形的示意圖,并在圖中標(biāo)出可能的各內(nèi)角的度數(shù).(說(shuō)明:要求畫(huà)出的兩個(gè)三角形不相似,且不是等腰三角形.)
(4)請(qǐng)你寫(xiě)出兩個(gè)符合(3)中一般規(guī)律的非等腰三角形的特征.
【答案】分析:(1)根據(jù)等邊對(duì)等角,及角平分線定義易得∠1=∠2=36°,∠C=72°,那么∠BDC=72°則可得AD=BD=CB∴△ABD與△DBC都是等腰三角形;
(2)把等腰直角三角形分為兩個(gè)小的等腰直角三角形即可,把108°的角分為36°和72°即可;
(3)利用直角三角形的中線等于直角三角形斜邊的一半可得任意直角三角形的中線把直角三角形分為兩個(gè)等腰三角形;由(1),(2)易得所知的兩個(gè)角要么是2倍關(guān)系,要么是3倍關(guān)系,可猜測(cè)只要所給的三個(gè)角中有2個(gè)角是2倍或3倍關(guān)系都可得到上述圖形;
(4)按照發(fā)現(xiàn)的(3)的特點(diǎn)來(lái)寫(xiě),注意去掉特殊三角形的形式.
解答:(1)證明:在△ABC中,∵AB=AC,∴∠ABC=∠C,
∵∠A=36°,
∴∠ABC=∠C=(180°-∠A)=72°,(1分)
∵BD平分∠ABC,∴∠1=∠2=36°
∴∠3=∠1+∠A=72°,
∴∠1=∠A,∠3=∠C,
∴AD=BD,BD=BC,
∴△ABD與△BDC都是等腰三角形.

(2)解:如下圖所示:


(3)解:如圖所示:


(4)解:
特征一:直角三角形(直角邊不等);
特征二:2倍內(nèi)角關(guān)系,如圖①.0°<α<45°,其中,α≠30°,α≠36°,a≠;
特征三:3倍內(nèi)角關(guān)系,如圖②.0°<α<45°,其中,α≠30°,α≠36度.
點(diǎn)評(píng):本題考查了等腰三角形的判定;注意應(yīng)根據(jù)題中所給的范例用類比的方法推測(cè)出把一般三角形分為兩個(gè)等腰三角形的一般結(jié)論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(03)(解析版) 題型:填空題

(2007•太原)二次函數(shù):y=x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(-1,0)、B(3,0)兩點(diǎn),其頂點(diǎn)坐標(biāo)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年浙江省名校中考數(shù)學(xué)模擬試卷(八)(解析版) 題型:解答題

(2007•太原)數(shù)學(xué)課上,同學(xué)們探究下面命題的正確性:頂角為36°的等腰三角形具有一種特性,即經(jīng)過(guò)它某一頂點(diǎn)的一條直線可把它分成兩個(gè)小等腰三角形.為此,請(qǐng)你解答問(wèn)題(1).

(1)已知:如圖①,在△ABC中,AB=AC,∠A=36°,直線BD平分∠ABC交AC于點(diǎn)D.求證:△ABD與△DBC都是等腰三角形;
(2)在證明了該命題后,小喬發(fā)現(xiàn):下面兩個(gè)等腰三角形如圖②、③也具有這種特性.請(qǐng)你在圖②、圖③中分別畫(huà)出一條直線,把它們分成兩個(gè)小等腰三角形,并在圖中標(biāo)出所有等腰三角形兩個(gè)底角的度數(shù);
(3)接著,小喬又發(fā)現(xiàn):其它一些非等腰三角形也具有這樣的特性,即過(guò)它其中一個(gè)頂點(diǎn)畫(huà)一條直線可以將原三角形分成兩個(gè)小等腰三角形.請(qǐng)你畫(huà)出兩個(gè)不同類型且具有這種特性的三角形的示意圖,并在圖中標(biāo)出可能的各內(nèi)角的度數(shù).(說(shuō)明:要求畫(huà)出的兩個(gè)三角形不相似,且不是等腰三角形.)
(4)請(qǐng)你寫(xiě)出兩個(gè)符合(3)中一般規(guī)律的非等腰三角形的特征.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年江蘇省無(wú)錫市江南中學(xué)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2007•太原)數(shù)學(xué)課上,同學(xué)們探究下面命題的正確性:頂角為36°的等腰三角形具有一種特性,即經(jīng)過(guò)它某一頂點(diǎn)的一條直線可把它分成兩個(gè)小等腰三角形.為此,請(qǐng)你解答問(wèn)題(1).

(1)已知:如圖①,在△ABC中,AB=AC,∠A=36°,直線BD平分∠ABC交AC于點(diǎn)D.求證:△ABD與△DBC都是等腰三角形;
(2)在證明了該命題后,小喬發(fā)現(xiàn):下面兩個(gè)等腰三角形如圖②、③也具有這種特性.請(qǐng)你在圖②、圖③中分別畫(huà)出一條直線,把它們分成兩個(gè)小等腰三角形,并在圖中標(biāo)出所有等腰三角形兩個(gè)底角的度數(shù);
(3)接著,小喬又發(fā)現(xiàn):其它一些非等腰三角形也具有這樣的特性,即過(guò)它其中一個(gè)頂點(diǎn)畫(huà)一條直線可以將原三角形分成兩個(gè)小等腰三角形.請(qǐng)你畫(huà)出兩個(gè)不同類型且具有這種特性的三角形的示意圖,并在圖中標(biāo)出可能的各內(nèi)角的度數(shù).(說(shuō)明:要求畫(huà)出的兩個(gè)三角形不相似,且不是等腰三角形.)
(4)請(qǐng)你寫(xiě)出兩個(gè)符合(3)中一般規(guī)律的非等腰三角形的特征.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年山西省太原市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•太原)數(shù)學(xué)課上,同學(xué)們探究下面命題的正確性:頂角為36°的等腰三角形具有一種特性,即經(jīng)過(guò)它某一頂點(diǎn)的一條直線可把它分成兩個(gè)小等腰三角形.為此,請(qǐng)你解答問(wèn)題(1).

(1)已知:如圖①,在△ABC中,AB=AC,∠A=36°,直線BD平分∠ABC交AC于點(diǎn)D.求證:△ABD與△DBC都是等腰三角形;
(2)在證明了該命題后,小喬發(fā)現(xiàn):下面兩個(gè)等腰三角形如圖②、③也具有這種特性.請(qǐng)你在圖②、圖③中分別畫(huà)出一條直線,把它們分成兩個(gè)小等腰三角形,并在圖中標(biāo)出所有等腰三角形兩個(gè)底角的度數(shù);
(3)接著,小喬又發(fā)現(xiàn):其它一些非等腰三角形也具有這樣的特性,即過(guò)它其中一個(gè)頂點(diǎn)畫(huà)一條直線可以將原三角形分成兩個(gè)小等腰三角形.請(qǐng)你畫(huà)出兩個(gè)不同類型且具有這種特性的三角形的示意圖,并在圖中標(biāo)出可能的各內(nèi)角的度數(shù).(說(shuō)明:要求畫(huà)出的兩個(gè)三角形不相似,且不是等腰三角形.)
(4)請(qǐng)你寫(xiě)出兩個(gè)符合(3)中一般規(guī)律的非等腰三角形的特征.

查看答案和解析>>

同步練習(xí)冊(cè)答案