如圖,AB是⊙O的直徑,AC是弦.
(1)請(qǐng)你按下面步驟畫圖(畫圖或作輔助線時(shí)先使用鉛筆畫出,確定后必須使用黑色字跡的簽字筆描黑);
第一步,過點(diǎn)A作∠BAC的角平分線,交⊙O于點(diǎn)D;
第二步,過點(diǎn)D作AC的垂線,交AC的延長線于點(diǎn)E.
第三步,連接BD.
(2)求證:AD2=AE•AB;
(3)連接EO,交AD于點(diǎn)F,若5AC=3AB,求的值.
【考點(diǎn)】圓的綜合題.
【專題】綜合題.
【分析】(1)根據(jù)基本作圖作出∠BAC的角平分線AD交⊙O于點(diǎn)D;點(diǎn)D作AC的垂線,垂足為點(diǎn)E;
(2)根據(jù)直徑所對(duì)的圓周角為直角得到∠ADB=90°,DE⊥AC,則∠AED=90°,又由AD平分∠CAB得到∠CAD=∠DAB,根據(jù)相似三角形的判定得到Rt△ADE∽R(shí)t△ABD,根據(jù)相似的性質(zhì)得到AD:AB=AE:AD,利用比例的性質(zhì)即可得到AD2=AE•AB;
(3)連OD、BC,它們交于點(diǎn)G,由5AC=3AB,則不妨設(shè)AC=3x,AB=5x,根據(jù)直徑所對(duì)的圓周角為直角得到∠ACB=90°,由∠CAD=∠DAB得到,根據(jù)垂徑定理的推論得到OD垂直平分BC,則有OD∥AE,OG=AC=x,并且得到四邊形ECGD為矩形,則CE=DG=OD-OG=x-x=x,可計(jì)算出AE=AC+CE=3x+x=4x,利用AE∥OD可得到△AEF∽△DOF,則AE:OD=EF:OF,即EF:OF=4x:x=8:5,然后根據(jù)比例的性質(zhì)即可得到 的值.
【解答】(1)解:如圖;
(2)證明:∵AB是⊙O的直徑,
∴∠ADB=90°,
而DE⊥AC,
∴∠AED=90°,
∵AD平分∠CAB,
∴∠CAD=∠DAB,
∴Rt△ADE∽R(shí)t△ABD,
∴AD:AB=AE:AD,
∴AD2=AE•AB;
(3)解:連OD、BC,它們交于點(diǎn)G,如圖,
∵5AC=3AB,即AC:AB=3:5,
∴不妨設(shè)AC=3x,AB=5x,
∵AB是⊙O的直徑,
∴∠ACB=90°,
又∵∠CAD=∠DAB,
∴,
∴OD垂直平分BC,
∴OD∥AE,OG=1 2 AC=3 2 x,
∴四邊形ECGD為矩形,
∴CE=DG=OD-OG=x-x =x,
∴AE=AC+CE=3x+x=4x,
∵AE∥OD,
∴△AEF∽△DOF,
∴AE:OD=EF:OF,
∴EF:OF=4x:x=8:5,
∴ .
【點(diǎn)評(píng)】本題考查了圓的綜合題:平分弦所對(duì)的弧的直徑垂直平分弦;在同圓或等圓中,相等的圓周角所對(duì)的弧相等;直徑所對(duì)的圓周角為直角;運(yùn)用相似三角形的判定與性質(zhì)證明等積式和幾何計(jì)算;掌握基本的幾何作圖.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué)解題思路與方法 題型:047
已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com