你知道嗎?平時我們在跳大繩時,繩甩到最高處的形狀可近似地看為拋物線.如圖所示,正在甩繩的甲、乙兩名學(xué)生拿繩的手間距為4m,距地面均為1m,學(xué)生丙、丁分別站在距甲拿繩的手水平距離1m、2.5m處.繩子在甩到最高處時剛好通過他們的頭頂.已知學(xué)生丙的身高是1.5m,則學(xué)生丁的身高為(建立的平面直角坐標(biāo)系如圖所示)( )

A.1.5m
B.1.625m
C.1.66m
D.1.67m
【答案】分析:即求學(xué)生丁對應(yīng)的拋物線的點(diǎn)的縱坐標(biāo),需求拋物線的解析式.根據(jù)所建的坐標(biāo)系知拋物線過點(diǎn)(-1,1)、(3,1)、(0,1.5),易求解析式,再求x=1.5時拋物線的值就是丁的身高.
解答:解:設(shè)拋物線的解析式為y=ax2+bx+c,
因為拋物線過點(diǎn)(-1,1)、(3,1)、(0,1.5)
所以有:

解之得
所以y=-x2+x+1.5.
當(dāng)x=1.5時,y==1.625.
即丁的身高是1.625米.
故選B.
點(diǎn)評:體驗建模過程的重要性,感受身邊的數(shù)學(xué),培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣,這是數(shù)學(xué)建模思想的目的之所在.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)你知道嗎?平時我們在跳大繩時,繩甩到最高處的形狀可近似地看為拋物線.如圖所示,正在甩繩的甲、乙兩名學(xué)生拿繩的手間距為4m,距地面均為1m,學(xué)生丙、丁分別站在距甲拿繩的手水平距離1m、2.5m處.繩子在甩到最高處時剛好通過他們的頭頂.已知學(xué)生丙的身高是1.5m,則學(xué)生丁的身高為(建立的平面直角坐標(biāo)系如圖所示)( 。
A、1.5mB、1.625mC、1.66mD、1.67m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)你知道嗎?平時我們在跳繩時,繩甩到最高處的形狀可近似地看為拋物線,如圖,正在甩繩的甲、乙兩名學(xué)生拿繩的手間距離為4m,距地面均為1m,學(xué)生丙、丁分別站在距甲拿繩的手水平距離1m、2.5m處,繩子在甩到最高處時剛好通過他們的頭頂.已知學(xué)生丙的身高1.5m,則學(xué)生丁的身高為
 
m(建立的平面直角坐標(biāo)系如圖所示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》?碱}集(14):2.6 何時獲得最大利潤(解析版) 題型:選擇題

你知道嗎?平時我們在跳大繩時,繩甩到最高處的形狀可近似地看為拋物線.如圖所示,正在甩繩的甲、乙兩名學(xué)生拿繩的手間距為4m,距地面均為1m,學(xué)生丙、丁分別站在距甲拿繩的手水平距離1m、2.5m處.繩子在甩到最高處時剛好通過他們的頭頂.已知學(xué)生丙的身高是1.5m,則學(xué)生丁的身高為(建立的平面直角坐標(biāo)系如圖所示)( )

A.1.5m
B.1.625m
C.1.66m
D.1.67m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(02)(解析版) 題型:選擇題

(2004•濟(jì)南)你知道嗎?平時我們在跳大繩時,繩甩到最高處的形狀可近似地看為拋物線.如圖所示,正在甩繩的甲、乙兩名學(xué)生拿繩的手間距為4m,距地面均為1m,學(xué)生丙、丁分別站在距甲拿繩的手水平距離1m、2.5m處.繩子在甩到最高處時剛好通過他們的頭頂.已知學(xué)生丙的身高是1.5m,則學(xué)生丁的身高為(建立的平面直角坐標(biāo)系如圖所示)( )

A.1.5m
B.1.625m
C.1.66m
D.1.67m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年山東省濟(jì)南市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2004•濟(jì)南)你知道嗎?平時我們在跳大繩時,繩甩到最高處的形狀可近似地看為拋物線.如圖所示,正在甩繩的甲、乙兩名學(xué)生拿繩的手間距為4m,距地面均為1m,學(xué)生丙、丁分別站在距甲拿繩的手水平距離1m、2.5m處.繩子在甩到最高處時剛好通過他們的頭頂.已知學(xué)生丙的身高是1.5m,則學(xué)生丁的身高為(建立的平面直角坐標(biāo)系如圖所示)( )

A.1.5m
B.1.625m
C.1.66m
D.1.67m

查看答案和解析>>

同步練習(xí)冊答案