如圖1,已知∠EOF,點(diǎn)B、C在射線OF上,四邊形ABCD是平行四邊形,AC、BD相交于點(diǎn)M,連接OM.
(1)當(dāng)OM⊥AC時(shí),求證:OA=OC.
(2)如圖2,當(dāng)∠EOF=45°時(shí),且四邊形ABCD是邊長(zhǎng)為a的正方形時(shí),求OM的長(zhǎng).(結(jié)果保留根號(hào))
作业宝

(1)證明:∵四邊形ABCD是平行四邊形,
∴AM=CM,
∵OM⊥AC,
∴OM是AC的垂直平分線,
∴OA=OC;

(2)過(guò)M作MG⊥OF于G,
∵四邊形ABCD是邊長(zhǎng)為a的正方形,
∴AD∥BC,∠DBC=45°,
∵∠EOF=45°,
∴∠AOB=∠EOF,
∴AO∥DB,
∴四邊形AOBD是平行四邊形,
∴AD=OB=a,
∵OG=a,
∵BC=a,
∴MG=a,
∴OM==a.
分析:(1)若要證明OA=OC,則可轉(zhuǎn)化為證明OM是AC的垂直平分線即可;
(2)過(guò)M作MG⊥OF于G,首先證明四邊形AOBD是平行四邊形,得到AD=OB,再利用等腰直角三角形的性質(zhì)得到BG和MG的長(zhǎng),進(jìn)而利用勾股定理即可求出OM的長(zhǎng).
點(diǎn)評(píng):本題考查了垂直平分線的性質(zhì)、正方形的性質(zhì)、平行四邊形的判定和性質(zhì)以及勾股定理的運(yùn)用,題目的綜合性很強(qiáng),難度中等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知正方形ABCD中,對(duì)角線AC、BD交于O點(diǎn),過(guò)O點(diǎn)作OE⊥OF分別交DC于E,交BC于F,∠FEC的角平分線EP交直線AC于P.
(1)①求證:OE=OF;
②寫(xiě)出線段EF、PC、BC之間的一個(gè)等量關(guān)系式,并證明你的結(jié)論;
(2)如圖2,當(dāng)∠EOF繞O點(diǎn)逆時(shí)針旋轉(zhuǎn)一個(gè)角度,使E、F分別在CD、BC的延長(zhǎng)線上,請(qǐng)完成圖形并判斷(1)中的結(jié)論①、②是否分別成立?若不成立,寫(xiě)出相應(yīng)的結(jié)論(所寫(xiě)結(jié)論均不必證明).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•貴陽(yáng)模擬)如圖1,已知∠EOF,點(diǎn)B、C在射線OF上,四邊形ABCD是平行四邊形,AC、BD相交于點(diǎn)M,連接OM.
(1)當(dāng)OM⊥AC時(shí),求證:OA=OC.
(2)如圖2,當(dāng)∠EOF=45°時(shí),且四邊形ABCD是邊長(zhǎng)為a的正方形時(shí),求OM的長(zhǎng).(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖1,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,連接AE、BF.求證:AE=BF;
(2)為響應(yīng)市人民政府“形象勝于生命”的號(hào)召,在甲建筑物上從A點(diǎn)到E點(diǎn)掛一長(zhǎng)為30m的宣傳條幅(如圖2),在乙建筑物的頂部D點(diǎn)測(cè)得頂端A點(diǎn)的仰角為45°,測(cè)得條幅底端E點(diǎn)的俯角為30°,求底部不能直接到達(dá)的兩建筑物之間的水平距離(答案可帶根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)如圖1,已知∠EOF=120°,OM平分∠EOF,A是OM上一點(diǎn),∠BAC=60°,且與OF、OE分別相交于點(diǎn)B、C,則有AB=AC;
(2)如圖2,在如上的(1)中,當(dāng)∠BAC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)使得點(diǎn)B落在OF的反向延長(zhǎng)線上時(shí),(1)中的結(jié)論是否還成立?若成立,給出證明;若不成立,說(shuō)明理由;
(3)如圖3,已知∠AOC=∠BOC=∠BAC=60°,求證:①△ABC是等邊三角形; ②OC=OA+OB.

查看答案和解析>>

同步練習(xí)冊(cè)答案