如圖①是一個小朋友玩“滾鐵環(huán)”的游戲,將這個游戲抽象為數(shù)學問題如圖②,已知鐵環(huán)的半徑為25cm,設(shè)鐵環(huán)中心為O,鐵環(huán)與地面接觸點為F,鐵環(huán)鉤與鐵環(huán)的接觸點為A,鐵環(huán)鉤與手的接觸點是B,鐵環(huán)鉤AB長75cm,BG表示點B距離地面的高度.

(1)當鐵環(huán)鉤AB與鐵環(huán)相切時(如圖③),切點A離地面的高度AM為5cm,求水平距離FG的長;
(2)當點A與點O同一水平高度時(如圖④),鐵環(huán)容易向前滾動,現(xiàn)將如圖③鐵環(huán)鉤的一端從A點提升到與O點同一水平高度的C點,鐵環(huán)鉤的另一端點從點B上升到點D,且水平距離FG保持不變,求BD的長(精確到1cm).
【答案】分析:(1)由矩形的性質(zhì)可求出OH,再由勾股定理得出AH,則△OHA∽△AIB,得,代數(shù)數(shù)值即可求得答案;
(2)由四邊形OFGP是矩形,得出CP,在Rt△CPD中,由勾股定理得出DP,在Rt△AIB中,再由三角函數(shù)的定義得出IB,從而得出BD的長.
解答:解:(1)如圖四邊形HFGI,HFMA是矩形,
∵OH=OF-HF=OF-AM=25-5=20,
∴在Rt△OHA中,,

方法一∵AB是圓的切線,∴∠OAB=90°
∴∠OAH+∠BAI=∠OAH+∠AOH=90°,
得∠BAI=∠AOH,又∠OHA=∠AIB=90°,
∴△OHA∽△AIB,得
,得AI=60(2分),
FG=HI=HA+AI=15+60=75(cm);
方法二:∵AB是圓的切線,∴∠OAB=90°
∴∠OAH+∠BAI=∠OAH+∠AOH=90°,
得∠BAI=∠AOH,∴
在Rt△ABI中,
∴FG=HI=HA+AI=15+60=75(cm)

(2)如圖,四邊形OFGP是矩形,CP=OP-OC=FG-OC=75-25=50,
Rt△CPD中,;
Rt△AIB中,,
BG=BI+AM=45+5=50,DG=DP+OF=55.90+25=80.90,
BD=DG-BG=80.90-50=30.90≈31(cm).
點評:本題考查了切線的性質(zhì),相似三角形的判定和性質(zhì)以及解直角三角形的應(yīng)用,是中考壓軸題,難度偏大.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖1、2,圖1是一個小朋友玩“滾鐵環(huán)”的游戲,鐵環(huán)是圓形的,鐵環(huán)向前滾動時,鐵環(huán)鉤保持與鐵環(huán)相切.將這個游戲抽象為數(shù)學問題,如圖2.已知鐵環(huán)的半徑為5個單位(每個單位為5cm),設(shè)鐵環(huán)中心為O,鐵環(huán)鉤與鐵環(huán)相切點為M,鐵環(huán)與地面接觸點為A,∠MOA=α,且sinα=
35

(1)求點M離地面AC的高度BM(單位:厘米);
(2)設(shè)人站立點C與點A的水平距離AC等于11個單位,求鐵環(huán)鉤MF的長度(單位:厘
精英家教網(wǎng)米).

查看答案和解析>>

科目:初中數(shù)學 來源:河北省唐山市路北2010屆初三第二次模擬考試數(shù)學試題 題型:044

如圖1是一個小朋友玩“滾鐵環(huán)”的游戲,鐵環(huán)是圓形的,鐵環(huán)向前滾動時,鐵環(huán)鉤保持與鐵環(huán)相切.將這個游戲抽象為數(shù)學問題,如圖2.已知鐵環(huán)的半徑為5個單位(每個單位為5 cm),設(shè)鐵環(huán)中心為O,鐵環(huán)鉤與鐵環(huán)相切點為M,鐵環(huán)與地面接觸點為A,∠MOA=α,且sinα=

(1)求M點離地面AC的高度BM(單位:厘米);

(2)設(shè)人站立點C與點A的水平距離AC等于11個單位,求鐵環(huán)鉤MF的長度(單位:厘米).

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣東省廣州市初三中考數(shù)學模擬試卷(解析版) 題型:解答題

(2007•中山)如圖1、2,圖1是一個小朋友玩“滾鐵環(huán)”的游戲,鐵環(huán)是圓形的,鐵環(huán)向前滾動時,鐵環(huán)鉤保持與鐵環(huán)相切.將這個游戲抽象為數(shù)學問題,如圖2.已知鐵環(huán)的半徑為5個單位(每個單位為5cm),設(shè)鐵環(huán)中心為O,鐵環(huán)鉤與鐵環(huán)相切點為M,鐵環(huán)與地面接觸點為A,∠MOA=α,且sinα=
(1)求點M離地面AC的高度BM(單位:厘米);
(2)設(shè)人站立點C與點A的水平距離AC等于11個單位,求鐵環(huán)鉤MF的長度(單位:厘
米).

查看答案和解析>>

科目:初中數(shù)學 來源:2009年浙江省溫州市中考數(shù)學模擬檢測(5)(解析版) 題型:解答題

(2007•中山)如圖1、2,圖1是一個小朋友玩“滾鐵環(huán)”的游戲,鐵環(huán)是圓形的,鐵環(huán)向前滾動時,鐵環(huán)鉤保持與鐵環(huán)相切.將這個游戲抽象為數(shù)學問題,如圖2.已知鐵環(huán)的半徑為5個單位(每個單位為5cm),設(shè)鐵環(huán)中心為O,鐵環(huán)鉤與鐵環(huán)相切點為M,鐵環(huán)與地面接觸點為A,∠MOA=α,且sinα=
(1)求點M離地面AC的高度BM(單位:厘米);
(2)設(shè)人站立點C與點A的水平距離AC等于11個單位,求鐵環(huán)鉤MF的長度(單位:厘
米).

查看答案和解析>>

科目:初中數(shù)學 來源:2009年河南省中招數(shù)學模擬試卷(2)(解析版) 題型:解答題

(2007•中山)如圖1、2,圖1是一個小朋友玩“滾鐵環(huán)”的游戲,鐵環(huán)是圓形的,鐵環(huán)向前滾動時,鐵環(huán)鉤保持與鐵環(huán)相切.將這個游戲抽象為數(shù)學問題,如圖2.已知鐵環(huán)的半徑為5個單位(每個單位為5cm),設(shè)鐵環(huán)中心為O,鐵環(huán)鉤與鐵環(huán)相切點為M,鐵環(huán)與地面接觸點為A,∠MOA=α,且sinα=
(1)求點M離地面AC的高度BM(單位:厘米);
(2)設(shè)人站立點C與點A的水平距離AC等于11個單位,求鐵環(huán)鉤MF的長度(單位:厘
米).

查看答案和解析>>

同步練習冊答案