【題目】菱形的周長為20cm,兩鄰角的比為1:3,則菱形的面積為(  ).
A.25cm2
B.16cm2       
C. cm2
D. cm2

【答案】C
【解析】由已知可得,菱形的邊長AB=5cm,∠A=45°,∠D=135°,作BE⊥AD于E ,
則△ABE是等腰直角三角形,根據(jù)勾股定理可得BE=AE= cm,則菱形的面積為 cm2 , 故選C.

【考點精析】根據(jù)題目的已知條件,利用勾股定理的概念和菱形的性質(zhì)的相關知識可以得到問題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】若一個正n邊形的每個內(nèi)角為156°,則這個正n邊形的邊數(shù)是( )

A. 13 B. 14 C. 15 D. 16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】多邊形的內(nèi)角和不可能為( )

A. 180° B. 680° C. 1 080° D. 1 980°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(21)所在的象限是( )

A.第一象限 B.第二象限 C.第三象限 D.第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用反證法證明“三角形的三個內(nèi)角中至少有一個角不小于60度”,第一步應假設_____________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】填寫推理理由: 如圖,CD∥EF,∠1=∠2,求證:∠3=∠ACB.
證明:∵CD∥EF,
∴∠DCB=∠2
∵∠1=∠2,∴∠DCB=∠1.
∴GD∥CB
∴∠3=∠ACB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠ADC=72°,AD的垂直平分線交對角線BD于點P , 垂足為E , 連接CP , 求∠CPB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在菱形ABCD中,AEBC , AFCD , 且EF分別為BC , CD的中點,求∠EAF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學九年級1班同學積極響應“陽光體育工程”的號召,利用課外活動時間積極參加體育鍛煉,每位同學從長跑、籃球、鉛球、立定跳遠中選一項進行訓練,訓練前后都進行了測試.現(xiàn)將項目選擇情況及訓練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖表.

請你根據(jù)圖表中的信息回答下列問題:

(1)求選擇長跑訓練的人數(shù)占全班人數(shù)的百分比及該班學生的總?cè)藬?shù);

(2)求訓練后籃球定時定點投籃人均進球數(shù)

(3)根據(jù)測試資料,訓練后籃球定時定點投籃的人均進球數(shù)比訓練之前人均進球數(shù)增加25%。請求出參加訓練之前的人均進球數(shù)。

查看答案和解析>>

同步練習冊答案