【題目】為了測量某教學樓CD的高度,小明在教學樓前距樓基點C,12米的點A處測得樓頂D的仰角為50°,小明又沿CA方向向后退了3米到點B處,此時測得樓頂D的仰角為40°(B、A、C在同一水平線上),依據(jù)這些數(shù)據(jù)小明能否求出教學樓的高度?若能求,請你幫小明求出樓高;若不能求,請說明理由.(2.24)

【答案】能求13.44米

【解析】

根據(jù)題意:可得△ACD∽△DCB;可得;進而得到CDAC、BC的關系,代入數(shù)據(jù)解可得答案.

能求.

ACD與△DCB中,有∠ADC=DBC=40°;DAC=BDC=50°;

故有△ACD∽△DCB,

,

CD2=ACBC=12×15=180,

CD=13.44(米).

答:該教學樓的高度約為13.44米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了創(chuàng)建全國衛(wèi)生城市,某社區(qū)要清理一個衛(wèi)生死角內(nèi)的垃圾,租用甲、乙兩車運送,兩車各運12趟可完成,需支付運費4800元.已知甲、乙兩車單獨運完此堆垃圾,乙車所運趟數(shù)是甲車的2倍,且乙車每趟運費比甲車少200元.

(1)求甲、乙兩車單獨運完此堆垃圾各需運多少趟?

(2)若單獨租用一臺車,租用哪臺車合算?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰RtABC中,∠C90°,AC8,FAB邊上的中點,點DE分別在AC、BC邊上運動,且保持ADCE.連接DE、DFEF.在此運動變化的過程中,下列結(jié)論:①DFE是等腰直角三角形;②DE長度的最小值為4;③四邊形CDFE的面積保持不變;④CDE面積的最大值為8.其中正確的結(jié)論是( 。

A.①②③B.①③C.①③④D.②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀與思考:利用多項式的乘法法則,可以得到,反過來,則有利用這個式子可以將某些二次項系數(shù)是1的二次三項式分解因式。例如:將式子分解因式.這個式子的常數(shù)項,一次項系數(shù),所以

解:

上述分解因式的過程,也可以用十字相乘的形式形象地表示:先分解二次項系數(shù),分別寫在十字交叉線的左上角和左下角;再分解常數(shù)項,分別寫在十字交叉線的右上角和右下角;然后交叉相乘,求代數(shù)和,使其等于一次項系數(shù)(如圖).

請仿照上面的方法,解答下列問題:

1)分解因式:

2)分解因式:;

3)若可分解為兩個一次因式的積,寫出整數(shù)P的所有可能值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AE=BE,∠AED =ABC.

(1)求證:BD平分∠ABC;

(2)AB = CB,∠AED =4EAD,求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一扇窗戶垂直打開,即OM⊥OP,AC是長度不變的滑動支架,其中一端固定在窗戶的點A處,另一端在OP上滑動,將窗戶OM按圖示方向內(nèi)旋轉(zhuǎn)35°到達ON位置,此時點A,C的對應位置分別是點B,D,測量出∠ODB=25°,點D到點O的距離為30cm,求滑動支架BD的長.

(結(jié)果精確到1cm,參考數(shù)據(jù):sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABAC,∠A120°,AB的垂直平分線交BCM,交ABE,AC的垂直平分線交BCN,交ACF,若MN2,則NF=___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠A40°,點DBC邊上(不與CD點重合),點P、點Q分別是AC、AB邊上的動點,當△DPQ的周長最小時,則∠PDQ的度數(shù)為( 。

A. 140°B. 120°C. 100°D. 70°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)yx+6

1)求直線yx+6x軸、y軸交點坐標;

2)求出一次函數(shù)圖象與坐標軸所圍成的三角形的面積;

3)求坐標原點O到直線yx+6的距離.

查看答案和解析>>

同步練習冊答案